首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设3阶实对称矩阵A的各行元素之和都为3,向量α1=(一1,2,一1)T,α2=(0,一1,1)T都是齐次线性方程组AX=0的解. (1)求A的特征值和特征向量. (2)求作正交矩阵Q和对角矩阵Λ,使得QTAQ=A. (3)求A及[A
设3阶实对称矩阵A的各行元素之和都为3,向量α1=(一1,2,一1)T,α2=(0,一1,1)T都是齐次线性方程组AX=0的解. (1)求A的特征值和特征向量. (2)求作正交矩阵Q和对角矩阵Λ,使得QTAQ=A. (3)求A及[A
admin
2018-11-20
34
问题
设3阶实对称矩阵A的各行元素之和都为3,向量α
1
=(一1,2,一1)
T
,α
2
=(0,一1,1)
T
都是齐次线性方程组AX=0的解.
(1)求A的特征值和特征向量.
(2)求作正交矩阵Q和对角矩阵Λ,使得Q
T
AQ=A.
(3)求A及[A一(3/2)E]
6
.
选项
答案
(1)条件说明A(1,1,1)
T
=(3,3,3)
T
,即α
0
=(1,1,1)
T
是A的特征向量,特征值为3.又α
1
,α
2
都是AX=0的解说明它们也都是A的特征向量,特征值为0.由于α
1
,α
2
线性无关,特征值0的重数大于1.于是A的特征值为3,0,0. 属于3的特征向量:cα
0
,c≠0. 属于0的特征向量:c
1
α
1
+c
2
α
2
c
1
,c
2
不都为0. (2)将α
0
单位化,得[*] 对α
1
,α
2
作施密特正交化,得 [*] 作Q=(η
0
,η
1
,η
2
),则Q是正交矩阵,并且 Q
T
AQ=Q
-1
AQ=[*] (3)建立矩阵方程A(α
0
,α
1
,α
2
)=(3α
0
,0,0),用初等变换法求解: [*] [A一(3/2)E]
6
=(3/2)
6
E.
解析
转载请注明原文地址:https://kaotiyun.com/show/kwW4777K
0
考研数学三
相关试题推荐
设A为三阶矩阵,ξ1,ξ2,ξ3是三维线性无关的列向量,且Aξ1=一ξ1+2ξ2+2ξ3,Aξ2=2ξ1一ξ2一2ξ3,Aξ3=2ξ1一2ξ2一ξ3.求|A*+2E|.
设矩阵为A*对应的特征向量.判断A可否对角化.
设有四个线性无关的特征向量,求A的特征值与特征向量,并求A2010.
设有三个线性无关的特征向量,则a=________.
设n阶矩阵A满足A2+2A一3E=0.求:(A+4E)一1.
设n阶矩阵A满足A2+2A一3E=0.求:(A+2E)一1;
设,且AX+|A|E=A*+X,求X.
设求:AB一BA.
设A,B都是n阶矩阵,其中B是非零矩阵,且AB=0,则().
随机试题
“虎落平阳遭犬欺”啊,这种心理防御机制中属于
婴儿体内较年长者含水相对较多,主要增多部分为
肝硬化患者出现血性腹水,但无腹痛及发热,应首先考虑
枕叶肿瘤所致精神障碍的最特定的症状是
对于合同执行者而言,合同跟踪的对象有()。索赔费用的计算方法有()。
已知A、B两地之间有铁路、公路、民航等多种运输方式。假设在去年4月份,A、B两地间民航票价下降10%,当月该线路民航运量上升5%,A、B两地间铁路运量下降4%。则去年4月份A、B两地间铁路、民航运输需求的交叉弹性系数为()。
从公司角度考虑,公司应该多留留存收益,减少发放股利,这样有利于股东财富最大化。()
当期档案是指那些记录内容经常变化,只供当期审计使用的审计档案。 ( )
在下列关系运算中,不改变关系表中的属性个数但能减少元组个数的是
A、Alotofexperienceinthefield.B、Muchcontactwithnewly-openedcompanies.C、Agoodmanneroftalkingwithothers.D、Interp
最新回复
(
0
)