首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设3阶实对称矩阵A的各行元素之和都为3,向量α1=(一1,2,一1)T,α2=(0,一1,1)T都是齐次线性方程组AX=0的解. (1)求A的特征值和特征向量. (2)求作正交矩阵Q和对角矩阵Λ,使得QTAQ=A. (3)求A及[A
设3阶实对称矩阵A的各行元素之和都为3,向量α1=(一1,2,一1)T,α2=(0,一1,1)T都是齐次线性方程组AX=0的解. (1)求A的特征值和特征向量. (2)求作正交矩阵Q和对角矩阵Λ,使得QTAQ=A. (3)求A及[A
admin
2018-11-20
56
问题
设3阶实对称矩阵A的各行元素之和都为3,向量α
1
=(一1,2,一1)
T
,α
2
=(0,一1,1)
T
都是齐次线性方程组AX=0的解.
(1)求A的特征值和特征向量.
(2)求作正交矩阵Q和对角矩阵Λ,使得Q
T
AQ=A.
(3)求A及[A一(3/2)E]
6
.
选项
答案
(1)条件说明A(1,1,1)
T
=(3,3,3)
T
,即α
0
=(1,1,1)
T
是A的特征向量,特征值为3.又α
1
,α
2
都是AX=0的解说明它们也都是A的特征向量,特征值为0.由于α
1
,α
2
线性无关,特征值0的重数大于1.于是A的特征值为3,0,0. 属于3的特征向量:cα
0
,c≠0. 属于0的特征向量:c
1
α
1
+c
2
α
2
c
1
,c
2
不都为0. (2)将α
0
单位化,得[*] 对α
1
,α
2
作施密特正交化,得 [*] 作Q=(η
0
,η
1
,η
2
),则Q是正交矩阵,并且 Q
T
AQ=Q
-1
AQ=[*] (3)建立矩阵方程A(α
0
,α
1
,α
2
)=(3α
0
,0,0),用初等变换法求解: [*] [A一(3/2)E]
6
=(3/2)
6
E.
解析
转载请注明原文地址:https://kaotiyun.com/show/kwW4777K
0
考研数学三
相关试题推荐
设A为二阶矩阵,且A的每行元素之和为4,且|E+A|=0,则|2E+A2|为().
设的一个特征值为λ1=2,其对应的特征向量为ξ1=求常数a,b,c;
设A为三阶矩阵,ξ1,ξ2,ξ3是三维线性无关的列向量,且Aξ1=一ξ1+2ξ2+2ξ3,Aξ2=2ξ1一ξ2一2ξ3,Aξ3=2ξ1一2ξ2一ξ3.求矩阵A的全部特征值;
设矩阵若A有一个特征值为3,求a;
设有三个线性无关的特征向量,则a=________.
设,求B一1.
设四阶矩阵B满足BA一1=2AB+E,且A=,求矩阵B.
设A,B为n阶矩阵,且A2=A,B2=B,(A+B)2=A+B.证明:AB=0.
设求:|一2B|;
设A是三阶实对称矩阵,且A2+2A=0,r(A)=2.当k为何值时,A+kE为正定矩阵?
随机试题
患者钟某,70岁。昨天因情绪激动后突然意识丧失,大小便失禁,被送入医院进行抢救。查:体温为37℃,脉搏为90次/分,血压为180/100mmHg。听诊:心音规律,呼吸不规则,鼾声呼吸,意识完全丧失,对各种刺激均无反应,请你根据上述情况判断:(1)
以下属于苯二氮卓类的药物有
设计概算的作用是()。
IBM是一个巨大的公司,很自然地要划分部门。单一地按照区域地域、业务职能、客户群落、产品或产品系列等来划分部门,在企业里是非常普遍的现象,从前的IBM也不例外。但是近几年来,IBM公司把多种划分部门的方式有机地结合起来,其组织结构形成了“活着的”立体网络。
处于重要资产管理或控制岗位的员工存在的以下()情况最可能成为其侵占资产的借口。
依据《中华人民共和国未成年人保护法》,下列不属于对未成年人的社会保护的是()。
度量衡是我国古代使用的计量单位,其中“量”是指()方面的标准。
测验总分的分布呈负偏态,说明测验整体难度
A、我喜欢吃新鲜蔬菜,不过我可不是素食主义者。B、他的个子大概一米八左右,长得很身强力壮的。C、北京人艺的《茶馆》是中国戏剧史上的经典之作。D、了解中国最好的办法就是到中国去,亲眼看一看中国的实际情况。BB。语义重复。因“身强力壮”本身已含有程度意
Itisnetfighttotakeawayanything______(belong)toothers.
最新回复
(
0
)