首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设3阶实对称矩阵A的各行元素之和均为3,向量α1=(-1,2,-1)T,α2=(0,-1,1)T是线性方程组Ax=0的两个解. (1)求A的特征值与特征向量; (2)求正交矩阵Q和对角矩阵A,使得QTAQ=A.
设3阶实对称矩阵A的各行元素之和均为3,向量α1=(-1,2,-1)T,α2=(0,-1,1)T是线性方程组Ax=0的两个解. (1)求A的特征值与特征向量; (2)求正交矩阵Q和对角矩阵A,使得QTAQ=A.
admin
2021-01-19
110
问题
设3阶实对称矩阵A的各行元素之和均为3,向量α
1
=(-1,2,-1)
T
,α
2
=(0,-1,1)
T
是线性方程组Ax=0的两个解.
(1)求A的特征值与特征向量;
(2)求正交矩阵Q和对角矩阵A,使得Q
T
AQ=A.
选项
答案
(1)因为矩阵A的各行元素之和均为3,所以 [*], 则由特征值和特征向量的定义知,λ=3是矩阵A的特征值,α=(1,1,1)
T
是对应的特征向量.对应λ=3的全部特征向量为kα,其中k为不为零的常数. 又由题设知Aα
1
=0,Aα
2
=0,即Aα
1
=0.α
1
,Aα
2
=0.α
2
,而且α
1
,α
2
线性无关,所以λ=0是矩阵A的二重特征值,α
1
,α
2
是其对应的特征向量,对应λ=0的全部特征向量为k
1
α
1
+k
1
,k
2
其中k
1
,k
2
为不全为零的常数. (2)因为A是实对称矩阵,所以α与α
1
,α
2
正交,所以只需将α
1
,α
2
正交. 取β
1
=α
1
, [*]。 再将α,β
1
,β
2
单位化,得 [*] 令Q=[η
1
,η
2
,η
3
],则Q
-1
=Q
T
,由A是实对称矩阵必可相似对角化,得 [*]
解析
[分析] 由矩阵A的各行元素之和均为3及矩阵乘法,可得矩阵A的一个特征值和对应的特征向量;由齐次线性方程组Ax=0有非零解可知A必有零特征值,其非零解是零特征值所对应的特征向量.将A的线性无关的特征向量止交化可得正交矩阵Q.
[评注]本题涉及求抽象矩阵的特征值和特征向量,此类问题一般用定义求解,因此要想方设法将题设条件转化为特征值与特征向量定义Ax=λx的形式.
转载请注明原文地址:https://kaotiyun.com/show/l584777K
0
考研数学二
相关试题推荐
[*]
[*]
设e-x2是f(x)的一个原函数,下述两个反常积分(Ⅰ)=x4f′(x)dx,(Ⅱ)=x3f″(x)dx,正确的结论是()
求极限=_______.
如果β=(1,2,t)T可以由α1=(2,1,1)T,α2=(一1,2,7)T,α3=(1,一1,一4)T线性表示,则t=______。
设α,β,γ1,γ2,γ3都是4维列向量,且|A|=|α,γ1,γ2,γ3|=4,|B|=|β,γ1,γ2,γ3|=21,则|A+B|=________.
曲线y=(x≥0)与x轴围成的区域面积为_______
设向量组α1=线性无关,则a,b,c必满足关系式________
求不定积分
计算下列定积分:
随机试题
下列哪项是肾病综合征最常见的并发症
根据发行主体的不同,债券可以分为政府债券、企业债券和金融债券。()
以下各项中,不属于个人信用贷款特点的是()。
计算机辅助教学中的教学模式是()的有机结合,是为完成现代教学与学习任务采用的相对稳定的,用以设计、组织、实施、评估、优化教学与学校的策略方法和结构的简化形式。
A.浆液性炎B.纤维素性炎C.化脓性炎D.慢性肉芽肿性炎特发性巨细胞性心肌炎
()是资产阶级分权学说的代表人物。
2012年春节过后,甲外出打工,将一祖传瓷瓶交由邻居乙保管。乙因结婚用钱,谎称瓷瓶为自己所有,将其按照市价卖给了丙,得款1万元。2012年7月,乙见甲的房屋有倒塌危险,可能危及自己的房屋,遂以自己的名义请施工队加固甲的房屋。施工结束后,经结算需要支付工程款
毛泽东指出:“在民主革命时期,经过胜利、失败,再胜利、再失败,两次比较,我们才认识了中国这个客观世界。”其中两次胜利与失败是指
指令SUB[BX+DI+3456H),CX的机器码最后8位为( )。
窗体上有一个名称为Command1的命令按钮,编写如下事件过程:PrivateSubCommand1_Click()i=0DoWhliei<6Forj=1Toin=n+1Nexti=i+1LoopPrintnEndSub
最新回复
(
0
)