首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[a,b]上二阶可导,且f(A)=f(B),f’’(x)≠0,则( ).
设f(x)在[a,b]上二阶可导,且f(A)=f(B),f’’(x)≠0,则( ).
admin
2019-07-10
61
问题
设f(x)在[a,b]上二阶可导,且f(A)=f(B),f’’(x)≠0,则( ).
选项
A、f’(x)在[a,b]内没有零点
B、f’(x)在[a,b]内只有一个零点
C、f’(x)在[a,b]内至少有一个零点
D、f’(x)在[a,b]内零点个数不能确定
答案
B
解析
因为f(x)在[a,b]上连续,(a,b)内可导,f(A)一f(B),由罗尔定理知,至少存在-ξ∈(a,b),使得f’(ξ)=0.如果f’(x)在(a,b)内有两个零点ξ
1
,ξ
2
(ξ
1
≠ξ
2
),则函数f’(x)在[ξ
1
,ξ
2
]上仍满足罗尔定理条件,则在ξ
1
,ξ
2
之间存在ξ
3
,使f’’(ξ
3
)=0,这与在[a,b]上f’’(x)≠0矛盾.因此仅B入选.
转载请注明原文地址:https://kaotiyun.com/show/EbN4777K
0
考研数学二
相关试题推荐
过点(1/2,0)且满足关系式y’arcsinx+=1的曲线方程为_______。
求二重积分max(xy,1)dxdy,其中D={(x,y)|0≤x≤2,0≤y≤2}。
设b>a>0,证明不等式
设f(x),g(x)是恒大于零的可导函数,且f’(x)g(x)-f(x)g’(x)<0,则当a<x<b时,有()
设A=相似于对角阵.求:A100.
已知f(x1,x2,x3)=5x12+5x22+cx32一2x1x2+6x1x3一6x2x3的秩为2.试确定参数c及二次型对应矩阵的特征值,并问f(x1,x2,x3)=1表示何种曲面.
求证:当x>0时,有不等式arctanx+.
设函数f(x),g(x)在[a,+∞)上二阶可导,且满足条件f(a)=g(a),f’(a)=g’(a),f"(x)>g"(x)(x>a).证明:当x>a时,f(x)>g(x).
设A为n阶非奇异矩阵,α是n维列向量,b为常数,P=计算PQ;
设f(x)可导,则下列结论正确的是().
随机试题
钎焊前焊件表面准备工作没有()。
《中华人民共和国矿产资源法》规定:关闭矿山,必须提出()及有关采掘工程、不安全隐患、土地复垦利用、环境保护的资料,并按照国家规定报请审查批准。
企业实施科学化、规范化安全管理的工作基础是()。
我国的政策性银行有()。
下列关于出口信贷的说法中正确的是()。
根据会计法律制度的规定,记账凭证的保管期限为()年。
《中共中央关于推进农村改革发展若干重大问题的决定》指出,要继续推进农村综合改革,在()年基本完成乡镇机构改革任务。
追求与放弃都是正常的生活态度,有所追求就应有所放弃,有价值的人生,需要开拓进取、成就事业,但更要懂得正确和必要的放弃——这不是_____,而是一种_____。依次填入横线处的词语,最恰当的一组是()。
DebateovertheUseofRenewableEnergyAusubelofRockefellerUniversityinNewYork,USsaysthekeyrenewable(可再生的)ener
HowmanybuildingplacesdoestheBuildingServicelookateachmonthtoseeifthingsaregoingonwell?Whatshouldyoudoif
最新回复
(
0
)