首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
讨论曲线y=2lnx与y=2x+ln2+k在(0,+∞)内的交点个数(其中k为常数).
讨论曲线y=2lnx与y=2x+ln2+k在(0,+∞)内的交点个数(其中k为常数).
admin
2017-08-18
53
问题
讨论曲线y=2lnx与y=2x+ln
2
+k在(0,+∞)内的交点个数(其中k为常数).
选项
答案
令f(x)=2x+ln
2
+k一2lnx(x∈(0,+∞)),于是本题两曲线交点个数即为函数f(x)的零点个数.由 [*] 令g(x)=x+lnx一1 [*] 令f’(x)=0可解得唯一驻点x
0
=1∈(0,+∞). 当0<x<1时f’(x)<0,f(x)在(0,1]单调减少;而当x>1时f’(x)>0,f(x)在[1,+∞)单调增加.于是f(1)=2+k为f(x)在(0,+∞)内唯一的极小值点,且为(0,+∞)上的最小值点.因此f(x)的零点个数与最小值f(1)=2+k的符号有关. 当f(1)>0即k>一2时f(x)在(0,+∞)内恒为正值函数,无零点. 当f(1)=0即k=一2时f(x)在(0,+∞)内只有一个零点x
0
=1. 当f(1)<0即k<一2时需进一步考察f(x)在x→0
+
与x→+∞的极限: [*]f(x) =[*][2x+k+lnx(lnx一2)] =+∞, [*]f(x)=[*][(2x+k)+lnx(lnx一2)]=+∞, 由连续函数的零点定理可得,[*]x
1
∈(0,1)与x
2
∈(1,+∞)使得f(x
1
)=f(x
2
)=0,且由f(x)在(0,1)与(1,+∞)内单调可知f(x)在(0,1)内与(1,+∞)内最多各有一个零点,所以当k<一2时,f(x)在(0,+∞)内恰有两个零点.
解析
转载请注明原文地址:https://kaotiyun.com/show/l6r4777K
0
考研数学一
相关试题推荐
设随机变量X与Y独立同分布,且均服从(0,θ)(θ>0)上的均匀分布,则E|min(X,y)]=()
设总体X的概率密度为其中θ,φ(0<θ,φ<1)是未知参数,X1,X2,…,Xn,是取自总体X的简单随机样本,记N为样本值x1,x2,…,xn中小于1的个数,求θ,φ的最大似然估计.
设A,B均为n×n矩阵,β为n维列向量,且当n=4时,求解线性方程组Ax=β;
设(X,Y)的联合分布密度为求系数A及(X,Y)关于X,Y的边缘密度,且说明X,Y是否相互独立?
幂级数的和函数为__________.
向量场U(x,y,z)=xy2i+yexj+xln(1+z2)k在点P(1,1,0)处的散度divu=________.
(2000年试题,四)设其中,具有二阶连续偏导数,g具有二阶连续导数,求
设f(u,v)具有二阶连续偏导数,且满足求
以y=C1e-2x+C2ex+cosx为通解的二阶常系数非齐次线性微分方程为________。
在全概率公式中,除了要求条件B是任意随机事件及P(Ai)>0(i=1,2,…,n)之外,我们可以将其他条件改为()
随机试题
影响心理治疗疗效的因素不包括【】
接触联苯胺可引起
蒋某,原是某检察院检察员,1998年4月25日离任,何时他才能以律师身份担任原任职检察院办理案件的诉讼代理人?()
下列有关各种股权筹资形式的优缺点的表述中,正确的是()。
根据公司法律制度的规定,公司合并时,应当依法通知债权人并在报纸上公告。下列有关公司通知债权人及公告的表述中,符合规定的是()。
根据《刑法》的规定,单位负责人对依法履行职责、抵制违反《会计法》规定行为的会计入实行打击报复,情节恶劣,构成犯罪的,处以有期徒刑或者拘役。有期徒刑刑期最高为( )。
随着时间的流逝,归因会越来越具有()。
格式塔心理学家对于学习实质和过程的研究主要关注的是
数据库系统的核心是
Inthepast,theParkServicefocusedonmakingthebigscenicparksmore【C1】______andcomfortablefortourists.Roadswerepave
最新回复
(
0
)