首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
讨论曲线y=2lnx与y=2x+ln2+k在(0,+∞)内的交点个数(其中k为常数).
讨论曲线y=2lnx与y=2x+ln2+k在(0,+∞)内的交点个数(其中k为常数).
admin
2017-08-18
35
问题
讨论曲线y=2lnx与y=2x+ln
2
+k在(0,+∞)内的交点个数(其中k为常数).
选项
答案
令f(x)=2x+ln
2
+k一2lnx(x∈(0,+∞)),于是本题两曲线交点个数即为函数f(x)的零点个数.由 [*] 令g(x)=x+lnx一1 [*] 令f’(x)=0可解得唯一驻点x
0
=1∈(0,+∞). 当0<x<1时f’(x)<0,f(x)在(0,1]单调减少;而当x>1时f’(x)>0,f(x)在[1,+∞)单调增加.于是f(1)=2+k为f(x)在(0,+∞)内唯一的极小值点,且为(0,+∞)上的最小值点.因此f(x)的零点个数与最小值f(1)=2+k的符号有关. 当f(1)>0即k>一2时f(x)在(0,+∞)内恒为正值函数,无零点. 当f(1)=0即k=一2时f(x)在(0,+∞)内只有一个零点x
0
=1. 当f(1)<0即k<一2时需进一步考察f(x)在x→0
+
与x→+∞的极限: [*]f(x) =[*][2x+k+lnx(lnx一2)] =+∞, [*]f(x)=[*][(2x+k)+lnx(lnx一2)]=+∞, 由连续函数的零点定理可得,[*]x
1
∈(0,1)与x
2
∈(1,+∞)使得f(x
1
)=f(x
2
)=0,且由f(x)在(0,1)与(1,+∞)内单调可知f(x)在(0,1)内与(1,+∞)内最多各有一个零点,所以当k<一2时,f(x)在(0,+∞)内恰有两个零点.
解析
转载请注明原文地址:https://kaotiyun.com/show/l6r4777K
0
考研数学一
相关试题推荐
设A,B是n阶矩阵.A是什么矩阵时,若AB=A,必有B=E.A是什么矩阵时,有B≠E,使得AB=A;
设线性方程组添加一个方程ax1+2x2+bx3一5x4=0后,成为方程组求解(*)的通解;
设l为平面曲线y=x2从点O(0,0)到点A(1,1)的有向弧,则平面第二型曲线积分=___________.
设A,B是n阶实对称可逆矩阵,则存在n阶可逆阵P,使得下列关系式①PA=B.②P-1ABP=BA③P-1AP=B.④PTA2P=B2.成立的个数是()
(2000年试题,四)设其中,具有二阶连续偏导数,g具有二阶连续导数,求
设u=e-xsin(x/y),则在点(2,1/π)处的值为_________.
设函数y=y(x)往(-∞,+∞)内具有二阶导数,且y’≠0,x=x(y)是y=y(x)的反函数.求变换后的微分方程满足初始条件y(0)=0,y’(0)=3/2的解.
一般会想到如下解法:用牛顿一莱布尼茨公式,令[*]则[*]
市场上有两种股票,股票A的价格为60元/股,每股年收益为R1元,其均值为7,方差为50.股票B的价格为40元/股,每股年收益为R2元,其均值为3.2,方差为25,设R1和R2互相独立.某投资者有10000元,拟购买s1股股票A,s2股股票B,剩下的s3元
设某产品的需求函数为Q=Q(p),其对价格P的弹性εP=2,则当需求量为10000件时,价格增加1元会使产品收益增加______元.
随机试题
肝性脑病前驱期时的临床表现有
下列选项需要预防性应用抗菌药物的是()。
该项目主要环境影响因素是()。该项目生态环境影响分析的主要内容是()。
优化产业布局,率先在()区域内建立协调互动机制,推进区域协作配套,延伸壮大产业链,打造区域品牌。
工程项目年度计划是依据工程项目建设总进度计划和批准的设计文件编制的、用来合理安排本年度建设工程进度的计划。其主要内容包括( )。
伪造会计凭证,是指用涂改、挖补等手段来改变会计凭证的真实内容,歪曲事实真相的行为。()
下列属于货币经纪公司的服务对象的有()。
小王在每周的周一和周三值夜班。某月他共值夜班10次,则下月他第一次值夜班可能是几号?
当选中菜单某个选项时,都会有一定的动作,这个动作可以是
Tradeiscentraltohumanhealth,prosperityandsocialwelfare.【R1】______Examplesoftradeindailylifearesoabundanttheys
最新回复
(
0
)