首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设αi=(αi1,αi2,...,αin)T (i=1,2,…,r;r
设αi=(αi1,αi2,...,αin)T (i=1,2,…,r;r
admin
2019-05-11
41
问题
设α
i
=(α
i1
,α
i2
,...,α
in
)
T
(i=1,2,…,r;r
1,α
2
,...,α
n
线性无关.已知β=(b
1
,b
2
,...,b
n
)
T
是线性方程组
的非零解向量.试判断向量组α
1
,α
2
,...,α
r
,β的线性相关性.
选项
答案
设k
1
α
1
+k
2
α
2
+…+k
r
α
r
+1β=0, 因为β为方程组的非0解,有 [*] 即β≠0,β
T
α
1
=0,…,β
T
α
r
=0. 用β
T
左乘,并把β
T
α
i
=0代入,得lβ
T
β=0. 因为β≠0,有β
T
β>0,故必有l=0. 从而式为k
1
α
1
+k
2
α
2
+…+k
r
α
r
=0,由于α
1
,α
2
,...,α
r
线性无关,所以有 k
1
=k
2
=...=k
r
=0 因此向量组α
1
,α
2
,...,α
r
,β线性无关.
解析
转载请注明原文地址:https://kaotiyun.com/show/lAV4777K
0
考研数学二
相关试题推荐
设向量组(Ⅰ)α1,α2,α3;(Ⅱ)α1,α2,α3,α4;(Ⅲ)α1,α2,α3,α5,若向量组(Ⅰ)与向量组(Ⅱ)的秩为3,而向量组(Ⅲ)的秩为4.证明:向量组α1,α2,α3,α5-α4的秩为4.
设α1,α2,…,αn为n个线性无关的n维向量,且与向量β正交.证明:向量β为零向量.
设f(χ)在(0,+∞)内连续且单调减少.证明:∫1n+1f(χ)dχ≤f(k)≤f(1)+∫1nf(χ)dχ.
设向量组α1,α2,…,αn-1为n维线性无关的列向量组,且与非零向量β1,β2正交.证明:β1,β2线性相关.
求方程组的通解.
设f(χ)在[a,b]上二阶可导且f〞(χ)>0,证明:f(χ)在(a,b)内为凹函数.
设z=f(χ,y)二阶可偏导,=2,且f(χ,0)=1,f′y(χ,0)=χ,则f(χ,y)=_______.
设二次型f(x1,x2,x3)=2(a1x1+a2x2+a3x3)2+(b1x1+b2x2+b3x3)2,记若α,β正交且均为单位向量,证明f在正交变化下的标准形为2y12+y22。
一质点从时间t=0开始直线运动,移动了单位距离使用了单位时间,且初速度和末速度都为零.证明:在运动过程中存在某个时刻点,其加速度绝对值不小于4.
设一元函数f(x)有下列四条性质:①f(x)在[a,b]连续;②f(x)在[a,b]可积;③f(x)在[a,b]存在原函数;④f(x)在[a,b]可导。若用“P=>Q”表示可由性质P推出性质Q,则有()
随机试题
学生解题能够“一题多解”,说明他有较强的()。A.再现思维B.求同思维C.辐合思维D.发散思维
A.先煎B.后下C.包煎D.另煎E.冲服羚羊角入汤剂宜
患者,女性,70岁。因“颌下急性蜂窝织炎”入院。患者颈部明显红肿、疼痛,伴严重全身感染症状,自感心慌、气紧、胸闷,口唇发绀。既往有冠心病及慢性支气管炎史。入院后予以补液、抗感染治疗。预防该并发症的最重要措施是
以下有关流量比法的说法不正确的是()。
适用于基坑侧壁安全等级为一级的支护形式有()。
建筑高度小于等于()m的住宅建筑可采用自然通风方式的防烟系统。
传统体育教学提倡“三基教学”,它们是()。
有甲、乙两瓶质量相同的氯化钠溶液,甲溶液浓度为60%,乙溶液浓度为40%。现将甲溶液倒掉1/3,乙溶液倒掉一半,然后混合在一起,此时得到的溶液浓度约为:
255.255.255.255
Youshouldspendabout20minutesonQuestions1-13,whicharebased,onReadingPassage1below.Canani
最新回复
(
0
)