首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知β1,β2是非齐次线性方程组Ax=b的两个不同的解,α1,α2是对应的齐次线性方程组Ax=0的基础解系,k1,k2为任意常数,则方程组Ax=b的通解是( )
已知β1,β2是非齐次线性方程组Ax=b的两个不同的解,α1,α2是对应的齐次线性方程组Ax=0的基础解系,k1,k2为任意常数,则方程组Ax=b的通解是( )
admin
2020-03-24
65
问题
已知β
1
,β
2
是非齐次线性方程组Ax=b的两个不同的解,α
1
,α
2
是对应的齐次线性方程组Ax=0的基础解系,k
1
,k
2
为任意常数,则方程组Ax=b的通解是( )
选项
A、k
1
α
1
+k
2
(α
1
+α
2
)+
B、k
1
α
1
+k
2
(α
1
一α
2
)+
C、k
1
α
1
+k
2
(β
1
+β
2
)+
D、k
1
α
1
+k
2
(β
1
—β
2
)+
答案
B
解析
对于选项A、C,因为
(Aβ
1
一Aβ
2
)=
(b一b)=0,
所以A、C两项中不含有非齐次线性方程组Ax=b的特解,故均不正确。
对于选项D,虽然β
1
一β
2
是齐次线性方程组Ax=0的解,但它与α
1
不一定线性无关,故D项也不正确。
对于选项B,由于α
1
,α
1
一α
2
与α
1
,α
2
等价(显然它们能够互相线性表示),故α
1
,α
1
一α
2
也是齐次线性方程组的一组基础解系,而由
(Aβ
1
+Aβ
2
)=
(b+b)=b
可知
是齐次线性方程组Ax=b的一个特解,由非齐次线性方程组的通解结构定理知,B选项正确,故选B。
转载请注明原文地址:https://kaotiyun.com/show/lEx4777K
0
考研数学三
相关试题推荐
f(x)在[一1,1]上连续,则x=0是函数g(x)=的().
设A为m×n阶矩阵,且r(A)=m<n,则().
设A,B均是n阶矩阵,下列命题中正确的是
设函数y(x)=x3+3ax2+3bx+c在x=2处有极值,其图形在x=1处的切线与直线6x+2y+5=0平行,则y(x)的极大值与极小值之差为
设X1,X2,…,Xn,…为独立同分布的随机变量列,且均服从参数为λ(A>1)的指数分布,记φ(x)为标准正态分布函数,则
设函数则在点x=0处f(x)().
已知A是三阶矩阵,r(A)=1,则λ=0()
设幂级数的收敛半径为()
设an>0(n=1,2,…),若收敛,则下列结论正确的是
假设随机变量X服从参数为λ的指数分布,求随机变量Y=1-e-λx的概率密度函数fy(y).
随机试题
A.分泌性腹泻B.渗出性腹泻C.吸收不良性腹泻D.动力性腹泻E.渗透性腹泻下述疾病分别属于何种腹泻细菌学痢疾()
急性胰腺炎时,关于淀粉酶下列说法正确的是
小建中汤中配伍芍药的意义是()
一英国公民在中国境内居留期间,未持有效旅行证件前往不对外国人开放的地区旅行,被当地县公安机关处以7天的拘留处罚。该英国公民对此不服,前往当地一家律师事务所进行咨询。以下咨询意见正确的是哪些?
按照现行法律法规的有关规定,在以下土地权利中,可以抵押的有()。
债券的发行价格()
英国曾经流传这样一个关于战争的小故事:“少了一颗铁钉,丢了一只马掌;少了一只马掌,摔了一匹战马;摔了一匹战马,死了一位将军;死了一位将军,败了一场战役;败了一场战役,丢了一个国家。所以,少了一颗铁钉导致了一个国家的灭亡。”以下哪项论述与这个故事使用了相同
要了解英国君主立宪制确立之初的情况,下列文献中可供参考的是()。
我们都有过不由自主的时刻,就好像有一种我们所无法控制的力量,违背我们的意志,支配我们做下平时不会做的事,说出平时不会说的话。人越年轻,不由自主的时候就有可能越多,而会使我们陷入不由自主境地的导火索,往往都是由过往事件引发的情绪。它们的逻辑关系是:过往某个重
WaterandCitiesVocabularyandExpressionssanitationmalariajeopardizetenurediarrheacholeraWhatisthe
最新回复
(
0
)