首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(03年)设可微函数f(χ0,y0)在点(χ,y)取得极小僵,则下列结论正确的是 【 】
(03年)设可微函数f(χ0,y0)在点(χ,y)取得极小僵,则下列结论正确的是 【 】
admin
2019-03-11
57
问题
(03年)设可微函数f(χ
0
,y
0
)在点(χ,y)取得极小僵,则下列结论正确的是 【 】
选项
A、f(χ
0
,y)在y=y
0
处导数等于零.
B、f(χ
0
,y)在y=y
0
处导数大于零.
C、f(χ
0
,y)在y=y
0
处导数小于零.
D、f(χ
0
,y)在y=y
0
处的导数不存在.
答案
A
解析
由于f(χ,y)在(χ
0
,y
0
)取得极小值,则f(χ
0
,y)在y=y
0
取得极小值.又f(χ,y)在(χ
0
,y
0
)点处可微,则f′
y
(χ
0
,y
0
)存在,从而有f′
y
(χ
0
,y
0
)=0,即f(χ
0
,y)在y=y
0
处的导数为零,故应选A.
转载请注明原文地址:https://kaotiyun.com/show/hkP4777K
0
考研数学三
相关试题推荐
假设曲线L1:y=1一x2(0≤x≤1)与x轴和y轴所围区域被曲线L2:y=ax2分为面积相等的两部分.其中a是大于零的常数,试确定a的值.
当
A是n阶矩阵,数a≠b.证明下面3个断言互相等价:(1)(A一aE)(A一6E)=0.(2)r(A—aE)+r(A一bE)=n.(3)A相似于对角矩阵,并且特征值满足(λ一a)(λ一b)=0.
设常数α>2,财级数
若级数(x一a)n当x>0时发散,而当x=0时收敛,则常数a=________.
(Ⅰ)由曲线y=lnx与两直线y=e+1一x及y=0围成平面图形的面积S=________;(Ⅱ)由曲线y=2x一与直线y=a及y轴在第一象限所围平面图形的面积是仅由曲线y=2x一及直线y=a所围图形面积的,则a=________.
已知随机变量X,Y的概率分布分别为P{X=一1}=,并且P{X+Y=1}=1,求:(Ⅰ)(X,Y)的联合分布;(Ⅱ)X与Y是否独立?为什么?
已知二维随机变量(X,Y)的概率分布为又P{X=1}=0.5,且X与Y不相关.随机变量X+Y与X—Y是否相关,是否独立?
设A是一个n阶方阵,满足A2=A,R(A)=r,且A有两个不同的特征值.(Ⅰ)试证A可对角化,并求对角阵A;(Ⅱ)计算行列式|A-2E|.
随机试题
公安机关在查处违反治安管理行为时,应当告知当事人应有的权利,并保障当事人充分享有陈述权、申辩权、要求举行听证权、申请行政复议权、提起行政诉讼权等权利。
医务人员应具备良好的素质,以下不恰当的是
属循环系统疾病问诊内容的是
公正是医学伦理学原则,它应包括
某酒店施工现场(图1)内,酒店主体设计层数为地上17层、地下2层,建筑高度77.9m,耐火等级一级,建筑占地面积3250m2,地上部分建筑面42477.3m2,地下部分建筑面积5300.24m2。在建酒店东侧9m处为配电房,北侧10m处为可燃材料堆场(木材
以下对企事业单位的承包经营、承租经营所得的税务处理办法,符合当前规定的有()。
采取背景评价、输入评价、过程评价、成果评价步骤的课程评价模式是()。
数千年以来,人们对满月之夜总是心存偏见,因为有一些传说中,有人会在满月之夜变成狼人。但是近日一项研究表明,心脏病患者在满月期间不仅发病概率最低,而且死亡率也会明显下降。下列如果哪项为真,不能支持上述结论?
统计数据表明,近年来,民用航空飞机的安全性有很大提高。例如,某国2008年每飞行100万次发生恶性事故的次数为0.2次,而1989年为1.4次。从这些年的统计数字看,民用航空恶性事故发生率呈下降趋势。由此看出,乘飞机出行越来越安全。以下哪项不能加强上述结论
Fertilizerusehasexploded,overloadingplantsworldwide,likelyalteringecosystemsfordecadestocenturies,scientistsrepor
最新回复
(
0
)