首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(03年)设可微函数f(χ0,y0)在点(χ,y)取得极小僵,则下列结论正确的是 【 】
(03年)设可微函数f(χ0,y0)在点(χ,y)取得极小僵,则下列结论正确的是 【 】
admin
2019-03-11
87
问题
(03年)设可微函数f(χ
0
,y
0
)在点(χ,y)取得极小僵,则下列结论正确的是 【 】
选项
A、f(χ
0
,y)在y=y
0
处导数等于零.
B、f(χ
0
,y)在y=y
0
处导数大于零.
C、f(χ
0
,y)在y=y
0
处导数小于零.
D、f(χ
0
,y)在y=y
0
处的导数不存在.
答案
A
解析
由于f(χ,y)在(χ
0
,y
0
)取得极小值,则f(χ
0
,y)在y=y
0
取得极小值.又f(χ,y)在(χ
0
,y
0
)点处可微,则f′
y
(χ
0
,y
0
)存在,从而有f′
y
(χ
0
,y
0
)=0,即f(χ
0
,y)在y=y
0
处的导数为零,故应选A.
转载请注明原文地址:https://kaotiyun.com/show/hkP4777K
0
考研数学三
相关试题推荐
设A,B,C为常数,B2-AC>0,A≠0.u(x,y)具有二阶连续偏导数.试证明:必存在非奇异线性变换ξ=λ1x+y,η=λ2x+y(λ1,λ2为常数),将方程
已知齐次线性方程组(Ⅰ)的基础解系为ξ1=[1,0,1,1]T,ξ2=[2,1,0,一1]T,ξ3=[0,2,1,一1]T,添加两个方程后组成齐次线性方程组(Ⅱ),求(Ⅱ)的基础解系.
随机变量X可能取的值为-1,0,1.且知EX=0.1,EX2=0.9,求X的分布列.
设A是4×5矩阵,α1,α2,α3,α4,α5是A的列向量组,r(α1,α2,α3,α4,α5)=3,则()正确。
(Ⅰ)设X与Y相互独立,且X~N(5,15),Y~χ2(5),求概率P{X一5>};(Ⅱ)设总体X~N(2.5,62),X1,X2,X3,X4,X5是来自X的简单随机样本,求概率P{(1.3<<3.5)∩(6.3<S2<9.6)}.
下列无穷小中阶数最高的是().
设A,B为同阶方阵。(Ⅰ)若A,B相似,证明A,B的特征多项式相等;(Ⅱ)举一个二阶方阵的例子说明(Ⅰ)的逆命题不成立;(Ⅲ)当A,B均为实对称矩阵时,证明(Ⅰ)的逆命题成立。
设f(x)在(一∞,+∞)内有定义,且对于任意x与y均有f(x+y)=f(x)ey+f(y)ex,又设f’(0)存在且等于a(a≠0),试证明对任意x,f’(x)都存在,并求f(x)。
设f(x),g(x)是连续函数,当x→0时,f(x)与g(x)是等价无穷小,令F(x)=∫0xf(x-t)dt,G(x)=∫01xg(xt)dt,则当x→0时,F(x)是G(x)的().
(2014年)设,且a≠0,则当n充分大时有()
随机试题
患者,男,20岁。头部被木棒击伤后昏迷12分钟,清醒后诉头痛并呕吐1次。入院后,若患者出现急性颅内压增高,伴随其出现的生命体征应是
不属于《商业银行风险监管核心指标》包含的三个层次的是()。
某市甲公司于2017年9月1日设立,当年9月份发生以下业务:(1)9月10日甲公司的财务人员持有关证件到A银行营业部办理基本存款账户的开立手续,A银行工作人员审查了其开户的证明文件,并留存了相关证件的复印件,为其办理了基本存款账户的开户手续(隔日
指挥的手势是指挥工作的核心,两手的基本分工是()。
Peer-editingduringclassisanimportantstepofthe______approachtoteachingwriting.
公安机关的专政职能的实质是公安机关代表国家和人民对()实行政治统治。
中国消费者对轿车的了解和要求已经有了很大的变化,他们的价值观念以及对汽车理解的变化都会左右其购车意向。在对多个购车指标的调查中,我们发现,大家不再强调某个单一指标,但安全性能依然是消费者购买轿车最关心的指标,关注程度在我们的调查中占8.6%;其次关注的是轿
求下列幂级数的收敛域及其和函数:
Whatiscustomers’attitudetowardsthefollowingservices?Writethecorrectletter,A,BorC,nexttoquestions11-16.AThey
DearMs.Wang,IwanttoapplyforthepositionofpublicrelationswriterwhichwasadvertisedinChinaDaily.Having
最新回复
(
0
)