首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是m×s阶矩阵,B是s×n阶矩阵,且r(B)=r(AB).证明:方程组BX=0与ABX=0是同解方程组.
设A是m×s阶矩阵,B是s×n阶矩阵,且r(B)=r(AB).证明:方程组BX=0与ABX=0是同解方程组.
admin
2021-11-09
49
问题
设A是m×s阶矩阵,B是s×n阶矩阵,且r(B)=r(AB).证明:方程组BX=0与ABX=0是同解方程组.
选项
答案
首先,方程组BX=0的解一定是方程组ABX=0的解. 令r(B)=r且ξ
1
,ξ
2
,…,ξ
n-1
是方程组BX=0的基础解系,现设方程组ABX=0有一个解η
0
不是方程组BX=0的解,即Bη
0
≠0,显然ξ
1
,ξ
2
,…,ξ
n-r
,η
0
线性无关,若ξ
1
,ξ
2
,…,ξ
n-r
…,η
0
线性相关,则存在不全为零的常数k
1
,k
2
,…,k
n-r
,k
0
,使得k
1
ξ
1
+k
2
ξ
2
+…+k
n-r
ξ
n-r
+k
0
ξ
0
=0, 若k
0
=0,则k
1
ξ
1
+k
2
ξ
2
+…+k
n-r
ξ
n-r
=0,因为ξ
1
,ξ
2
,…,ξ
n-r
线性无关, 所以k
1
=k
2
=…=k
n-r
=0,从而ξ
1
,ξ
2
,…,ξ
n-r
,η
0
线性无关,所以k
0
≠0,故η
0
可由ξ
1
,ξ
2
,…,ξ
n-r
,线性表示,由齐次线性方程组解的结构,有Bη
0
=0,矛盾,所以ξ
1
,ξ
2
,…,ξ
n-r
,η
0
线性无关,且为方程组ABX=0的解,从而n-r(AB)≥n-r+1,r(AB)≤r-1,这与r(B)=r(AB)矛盾,故方程组BX=0与ABX=0同解.
解析
转载请注明原文地址:https://kaotiyun.com/show/lMy4777K
0
考研数学二
相关试题推荐
设n阶矩阵A满足A2+2A-3E=O.求:(1)(A+2E)-1;(2)(A+4E)-1.
求I=|cos(χ+y)|dχdy,其中D={(χ,y)|0≤χ≤,0≤y≤}.
设φ(χ)=(χ2-t)f(t)dt,其中f连续,则φ〞(χ)=_______.
设f(χ)在[0,+∞)上连续,在(0,+∞)内可导,则().
在上半平面上求一条上凹曲线,其上任一点P(z,Y)处的曲率等于此曲线在该点的法线段PQ的长度的倒数(Q为法线与χ轴的交点),且曲线在点(1,1)处的切线与χ轴平行.
曲线y=f(χ)=的斜渐近线为_______.
设A为3阶方阵,如果A-1的特征值是1,2,3,则|A|的代数余子式A11+A22+A33=.
交换积分次序并计算.
设齐次线性方程组其中ab≠0,n≥2,讨论a,b取何值时,方程组只有零解,有无穷多个解?在有无穷多个解时,求出其通解。
设求∫02πf(x-π)dx.
随机试题
关于脑垂体的叙述,正确的是
不合法的原始凭证是指原始凭证表述的事项与实际经济业务不符。()
虽然小明的期末测验成绩不高,但与期中相比有所提高,老师仍颁给他“学习进步奖”。这种评价属于()。
设函数=f(x)=+|x-a|(a>0).若f(3)<5,求a的取值范围.
某地级市人大制定《推进生态文明城市建设条例》,行使了地方立法权。()
行使管制权的主体是乡级以上人民政府的公安机关。( )
设圆盘x2+y2≤2ax内各点处的面密度与该点到坐标原点的距离成正比,试求该圆盘的重心.
(1)将考生文件夹下WIN文件夹中的文件WORK更名为PLAY。(2)在考生文件夹下创建文件夹GOOD,并设置属性为隐藏。(3)在考生文件夹下WIN文件夹中新建一个文件夹BOOK。(4)将考生文件夹下DAY文件夹中的文件WORK.DOC移动到考生文件
PersonalDetailsFamilyname:PetersAddress:7【L4】_______Crescent,MountLawleyPhonenumber:
Don’tletvacationsorbusinesstravelsideline(使退出)yourexerciseroutine.Physicalactivityisagreatwayto【C1】______stress
最新回复
(
0
)