首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是m×s阶矩阵,B是s×n阶矩阵,且r(B)=r(AB).证明:方程组BX=0与ABX=0是同解方程组.
设A是m×s阶矩阵,B是s×n阶矩阵,且r(B)=r(AB).证明:方程组BX=0与ABX=0是同解方程组.
admin
2021-11-09
54
问题
设A是m×s阶矩阵,B是s×n阶矩阵,且r(B)=r(AB).证明:方程组BX=0与ABX=0是同解方程组.
选项
答案
首先,方程组BX=0的解一定是方程组ABX=0的解. 令r(B)=r且ξ
1
,ξ
2
,…,ξ
n-1
是方程组BX=0的基础解系,现设方程组ABX=0有一个解η
0
不是方程组BX=0的解,即Bη
0
≠0,显然ξ
1
,ξ
2
,…,ξ
n-r
,η
0
线性无关,若ξ
1
,ξ
2
,…,ξ
n-r
…,η
0
线性相关,则存在不全为零的常数k
1
,k
2
,…,k
n-r
,k
0
,使得k
1
ξ
1
+k
2
ξ
2
+…+k
n-r
ξ
n-r
+k
0
ξ
0
=0, 若k
0
=0,则k
1
ξ
1
+k
2
ξ
2
+…+k
n-r
ξ
n-r
=0,因为ξ
1
,ξ
2
,…,ξ
n-r
线性无关, 所以k
1
=k
2
=…=k
n-r
=0,从而ξ
1
,ξ
2
,…,ξ
n-r
,η
0
线性无关,所以k
0
≠0,故η
0
可由ξ
1
,ξ
2
,…,ξ
n-r
,线性表示,由齐次线性方程组解的结构,有Bη
0
=0,矛盾,所以ξ
1
,ξ
2
,…,ξ
n-r
,η
0
线性无关,且为方程组ABX=0的解,从而n-r(AB)≥n-r+1,r(AB)≤r-1,这与r(B)=r(AB)矛盾,故方程组BX=0与ABX=0同解.
解析
转载请注明原文地址:https://kaotiyun.com/show/lMy4777K
0
考研数学二
相关试题推荐
求
设曲线L位于χOy平面的第一象限内,L上任意一点M处的切线与y轴总相交,交点为A,已知|MA|=|OA|,且L经过点(),求L的方程.
微分方程(2+3)y〞-4y′的通解为_______.
已知,求a,b的值。
设,问a,b,c为何值时,矩阵方程AX=B有解?有解时求出全部解。
设A为n阶矩阵,若Ak-1a≠0,而Aka=0.证明:向量组a,Aa,...,Ak-1a线性无关。
设a1,a2,...an为n个n维线性无关的向量,A是n阶矩阵,证明:Aa1,Aa2,...Aan线性无关的充分必要条件是A可逆。
A、 B、 C、 D、 A积分域由两部分组成(如图1.5—1).设将D=D1∪D2视为Y型区域,则故应选(A).
设3阶矩阵A与B相似,且|3E+2A|=0,|3E+B|=|E—2B|=0,则行列式|A|的代数余子式A11+A22+A33=________。
设f(x)在[0,1]上可微,当0≤x≤1时,x<f(x)<1,f’(x)≠1,试证在(0,1)内有且仅有一个x,使f(x)=z.
随机试题
前囟早闭常见于前囟迟闭常见于
总结前人认识,结合临床提出以虚实论治厥证的是:
人体内含量最多的无机元素是()。
(2009年)受力体一点处的应力状态如图5-49所示,该点的最大主应力σ1为()MPa。
根据《中华人民共和国环境影响评价法》中的关于“规划实施后的环境影响的篇章或者说明”的评价要求是()。
甲、乙分别为某有限合伙企业的普通合伙人和有限合伙人,后甲变更为有限合伙人,乙变更为普通合伙人。下列关于甲、乙对其合伙人性质互换前的企业债务承担的表述中,符合法律规定的有()。
税收实体法是规定税收法律关系主体的实体权利、义务的法律规范的总称,下列关于税收实体法陈述正确的是()。
下列有关审计工作底稿的表述中,正确的有()。
下列叙述正确的是()。
下列行为中()可以构成伪证罪。
最新回复
(
0
)