首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(χ)在[0,1]上二阶可导,f(1)=1,且=1,证明:存在ξ∈(0,1),使得f〞(ξ)-2f′(ξ)+2=0.
设f(χ)在[0,1]上二阶可导,f(1)=1,且=1,证明:存在ξ∈(0,1),使得f〞(ξ)-2f′(ξ)+2=0.
admin
2019-08-23
51
问题
设f(χ)在[0,1]上二阶可导,f(1)=1,且
=1,证明:存在ξ∈(0,1),使得f〞(ξ)-2f′(ξ)+2=0.
选项
答案
由[*]=1得f(0)=0,f′(0)=1, 由拉格朗日中值定理,存在c∈(0,1),使得f′(c)=[*]=1, 令φ(χ)=e
-2χ
[f′(χ)-1], 由f′(0)=f′(c)=1得φ(0)=φ(c)=0, 由罗尔定理,存在ξ∈(0,c)[*](0,1),使得φ′(ξ)=0, 而φ′(χ)=-2e
-2χ
[f′(χ)-1]+e
-2χ
f〞(χ)=e
-2χ
[f〞(χ)-2f′(χ)+2], 因为e
-2χ
≠0,所以f〞(ξ)-2f′(ξ)+2=0.
解析
转载请注明原文地址:https://kaotiyun.com/show/W9A4777K
0
考研数学二
相关试题推荐
如图,连续函数y=f(x)在区间[一3,一2],[2,3]上的图形分别是直径为1的上、下半圆周,在区间[一2,0],[0,2]的图形分别是直径为2的下、上半圆周。设F(x)=∫0xf(t)dt,则下列结论正确的是()[img][/img]
已知函数f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=0,f(1)=1。证明:存在两个不同的点η,ζ∈(0,1),使得f’(η)f’(ζ)=1。
设可导函数y=y(x)由方程∫0x+ye—t2dt=∫0xxsin2tdt确定,则=______。
设g(x)在(﹣∞,﹢∞)内存在二阶导数,且f”(x)<0.令f(x)=g(x)﹢g(-x),则当x≠0时()
设ξ0=(1,-1,1,-1)T是线性方程组的一个解向量,试求:(I)方程组(*)的全部解;(Ⅱ)方程组(*)的解中满足x2=x3的全部解.
设平面区域D(t)={(x,y)|0≤x≤y,0
设f(x)在[0,2]上连续,且f(0)=0,f(1)=1.证明:存在cE(0,1),使得f(C)=1-2c;
求极限
曲线y=(x一1)2(x一3)2的拐点个数为
已知f(x)在[0,3π/2]上连续,在(0,3π/2)内是函数的一个原函数,且f(0)=0。求f(x)在区间[0,3π/2]上的平均值;
随机试题
韦伯认为,在传统型统治的行政组织中,官吏们的行政管理或者技术才能并不重要,被认为高于一切的“第一要素”是他们()
真核生物肽链合成起始的特点,错误的是
戴用平面导板矫治器前牙咬在导板上时后牙离开5~6mm
男性患者,52岁,矮胖,查体肺下界在锁骨中线,腋前线,肩胛下角线分别为第5、7、9肋间隙,左右肺下界大致相同,最可能的原因是
每桶0.1%苯扎溴铵溶液泡手时,限泡入次为
下列哪项不是急性胰腺炎的病因
逻辑式F=A+B+c可变换为()。
某公司生产单一产品,实行标准成本管理。每件产品的标准工时为3小时,固定制造费用的标准成本为6元,企业生产能力为每月生产产品400件。7月份公司实际生产产品350件,发生固定制造成本2250元,实际工时为1100小时。根据上述数据计算,7月份公司固定制造
甲借款给乙1万元,乙与丙之间签订了一保证合同,此后乙与甲协商变更借款数额为1.5万元。合同到期时,乙无力偿还该借款。对此,下列说法不正确的有()。
下列关于国内信用证办理和使用要求的表述中,符合支付结算法律制度规定的是()。
最新回复
(
0
)