首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(χ)在[0,1]上二阶可导,f(1)=1,且=1,证明:存在ξ∈(0,1),使得f〞(ξ)-2f′(ξ)+2=0.
设f(χ)在[0,1]上二阶可导,f(1)=1,且=1,证明:存在ξ∈(0,1),使得f〞(ξ)-2f′(ξ)+2=0.
admin
2019-08-23
33
问题
设f(χ)在[0,1]上二阶可导,f(1)=1,且
=1,证明:存在ξ∈(0,1),使得f〞(ξ)-2f′(ξ)+2=0.
选项
答案
由[*]=1得f(0)=0,f′(0)=1, 由拉格朗日中值定理,存在c∈(0,1),使得f′(c)=[*]=1, 令φ(χ)=e
-2χ
[f′(χ)-1], 由f′(0)=f′(c)=1得φ(0)=φ(c)=0, 由罗尔定理,存在ξ∈(0,c)[*](0,1),使得φ′(ξ)=0, 而φ′(χ)=-2e
-2χ
[f′(χ)-1]+e
-2χ
f〞(χ)=e
-2χ
[f〞(χ)-2f′(χ)+2], 因为e
-2χ
≠0,所以f〞(ξ)-2f′(ξ)+2=0.
解析
转载请注明原文地址:https://kaotiyun.com/show/W9A4777K
0
考研数学二
相关试题推荐
曲线的斜渐近线方程为______。
如图,连续函数y=f(x)在区间[一3,一2],[2,3]上的图形分别是直径为1的上、下半圆周,在区间[一2,0],[0,2]的图形分别是直径为2的下、上半圆周。设F(x)=∫0xf(t)dt,则下列结论正确的是()[img][/img]
设f(x)在闭区间[0,1]上连续,且∫01f(x)dx=0,∫01exf(x)dx=0,证明在开区间(0,1)内存在两个不同的ξ1与ξ2,使f(ξ1)=0,f(ξ2)=0.
设常数a﹥0,积分,试比较I1与I2的大小,要求写明推导过程.
由方程2y3-2y2﹢2xy﹢y-x2=0确定的函数y=y(x)()
设f(x)在区间(0,﹢∞)上连续,且严格单调增加.试求证:F(x)=在区间(0,﹢∞)上也严格单调增加.
设f(x)=试求f[g(x)]和g[f(x)].
设函数f(x)在(0,+∞)内具有二阶连续导数,且与f(1)=f’(1)=1.求函数f(r)的表达式.
设其中f具有二阶连续偏导数,g具有二阶连续导数,求
[2018年]已知连续函数f(x)满足∫0xf(t)dt+∫0xtf(x一t)dt=ax2.若f(x)在区间[0,1]上的平均值为1,求a的值.
随机试题
求曲面z=xy上点(1,2,2)处的法线方程
2007年3月,某建设单位与甲施工单位签订《施工合同》,约定由甲承建办公楼。接着甲又与乙施工单位签订一份《劳务分包合同》,约定由乙承包该办公楼的建设任务并承担所有责任。则下列说法错误的是()。
填列存货项目的期末余额,所涉及的科目有()。
基金管理人是基金一切活动的中心。()
某银行2008年3月25日向厂发放临时贷款10万元,贷款期限为3个月:假设利率为9‰,该厂于2008年6月25日银行按期还贷,应计收利息为()。
()是指在整个借款期间,不随借贷资金的供求状况而变化的利率。
Whichofthefollowingdoesnotbelongtothepost-listeningactivities?
控制器的功能为()。
TreesforDemocracyIamWangariMaathai.WhenIwasgrowingupinNyeriincentralKenya,therewasnowordfordesertinm
PartⅡReadingComprehension(SkimmingandScanning)Directions:Inthispart,youwillhave15minutestogooverthepassageq
最新回复
(
0
)