首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(χ)在[0,1]上二阶可导,f(1)=1,且=1,证明:存在ξ∈(0,1),使得f〞(ξ)-2f′(ξ)+2=0.
设f(χ)在[0,1]上二阶可导,f(1)=1,且=1,证明:存在ξ∈(0,1),使得f〞(ξ)-2f′(ξ)+2=0.
admin
2019-08-23
53
问题
设f(χ)在[0,1]上二阶可导,f(1)=1,且
=1,证明:存在ξ∈(0,1),使得f〞(ξ)-2f′(ξ)+2=0.
选项
答案
由[*]=1得f(0)=0,f′(0)=1, 由拉格朗日中值定理,存在c∈(0,1),使得f′(c)=[*]=1, 令φ(χ)=e
-2χ
[f′(χ)-1], 由f′(0)=f′(c)=1得φ(0)=φ(c)=0, 由罗尔定理,存在ξ∈(0,c)[*](0,1),使得φ′(ξ)=0, 而φ′(χ)=-2e
-2χ
[f′(χ)-1]+e
-2χ
f〞(χ)=e
-2χ
[f〞(χ)-2f′(χ)+2], 因为e
-2χ
≠0,所以f〞(ξ)-2f′(ξ)+2=0.
解析
转载请注明原文地址:https://kaotiyun.com/show/W9A4777K
0
考研数学二
相关试题推荐
设在[0,1]上f’’(x)>0,则f’(0),f’(1),f(1)—f(0)或f(0)一f(1)的大小顺序是()
设A=是可逆矩阵,且A-1=,若C=,则C-1=_______.
设f(x)在(-∞,﹢∞)上连续,下述命题:①若对任意a,∫-aaf(x)dx=0,则f(x)必是奇函数;②若对任意a,∫-aaf(x)dx=2∫0af(x)dx,则F(X)必是偶函数;③若f(x)为周期为T的奇函数,则F(x)=∫0xf(t)dt也
设齐次线性方程组Ax=0为(I)求方程组(*)的基础解系和通解;(Ⅱ)问a,b满足什么条件时,方程组(*)和(**)是同解方程组.
一个高为l的柱体形贮油罐,底面是长轴为2a,短轴为2b的椭圆。现将贮油罐平放,当油罐中油面高度为时(如图1一3—4),计算油的质量。(长度单位为m,质量单位为kg,油的密度为常数ρkg/m3。)
求极限
[*]由密度函数求分布函数可以用积分法,但当涉及分段密度函数时一定要分清需要积分的区域,故一般先画个草图(图3-2),标出非零的密度函数,然后分不同情况观察(X,Y)落在给定的(x,y)左下方平面区域内的概率,从而计算F(x,y)的值。在计算随机变量满足某
设一批零件的长度服从正态分布N(μ,σ2),其中μ,σ2未知.现从中随机抽取16个零件,测得样本均值=20cm,样本方差S2=1cm2,则μ的置信水平为0.90的置信区间是()
已知β1,β2是非齐次线性方程组Ax=b的两个不同的解,α1,α2是对应的齐次线性方程Ax=0的基础解系,k1,k2为任意常数,则方程组Ax=b的通解是()
微分方程ydx+(x一3y2)dy=0,x>0满足条件y|x=1的特解为______。
随机试题
直接筹资主要有
硬膜外麻醉穿刺操作时不慎刺破硬脊膜,术后最容易出现
男性,40岁。病史2周,发热,皮肤有出血点,骨髓原始细胞>80%,过氧化物酶(++),Auer小体(+)。最可能的诊断是
关于胃的形态描述,错误的是
在开放积极条件下,一个国家国民生产总值由()四部分构成。
我国通过采用国债投资等多种措施推动经济结构调整和产业机构升级,促使我国的经济增长模式逐步由()转变。
谋求世界各国经济共同发展的根本途径是()。
TheAsiantigermomthatAmyChuaportraysinhernewbookmayseemlikejustonemorespeciesinthegenusExtremeParent—the
•Readthearticlebelowaboutsuccessfule-mailnegotiation.•Choosethebestsentencefromtheoppositepagetofilleachofth
Overthepastdecade,significantresearchhasdemonstratedwhatmanyhaveknownforalongtime:womenarecriticaltoeconomic
最新回复
(
0
)