首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数f(u)在(0,+∞)内具有二阶导数,且满足等式 若f(1)=0,fˊ(1)=1,求函数f(u)的表达式.
设函数f(u)在(0,+∞)内具有二阶导数,且满足等式 若f(1)=0,fˊ(1)=1,求函数f(u)的表达式.
admin
2019-08-27
54
问题
设函数f(u)在(0,+∞)内具有二阶导数,且
满足等式
若f(1)=0,fˊ(1)=1,求函数f(u)的表达式.
选项
答案
由(Ⅰ)知f"(u)+fˊ(u)/u=0且f(1)=0,fˊ(1)=1. 令p=fˊ(u),则f"(u)=dp/du,于是原方程化为dp/du+(1/u)p=0,解得p=C
1
/u. 由fˊ(u)=p(1)=1,知C
1
=1,即 fˊ(u)=1/u. 从而得f(u)=ln u+C,又f(1)=0,所以C=0,因此f(u)=ln u.
解析
直接解方程f"(u)+1/ufˊ(u)=0,并利用条件fˊ(1)=1,f(1)=0可得f(u).
转载请注明原文地址:https://kaotiyun.com/show/02A4777K
0
考研数学二
相关试题推荐
已知摆线的参数方程为其中0≤t≤2π,常数a>0.设该摆线一拱的弧长的数值等于该弧段绕z轴旋转一周所围成的旋转曲面面积的数值.求a的值.
两个相同直径为2R>0的圆柱体,它们的中心轴垂直相交,则此两圆柱体公共部分的体积为()(所画出的图形的体积是要求的,如图)
f(x)=在区间(-∞,﹢∞)内零点的个数为()
设f(x)在[0,2]上连续,且f(0)=0,f(1)=1.证明:存在ξ∈[0,2],使得2f(0)+f(1)+3f(2)=6f(ξ).
设f(x)在[0,2]上连续,且f(0)=0,f(1)=1.证明:存在c∈(0,1),使得f(c)=1-2c;
以下四个命题中,正确的是
设α1,α2,α3,α4都是n维向量.判断下列命题是否成立.①如果α1,α2,α3线性无关,α4不能用α1,α2,α3线性表示,则α1,α2,α3,α4线性无关.②如果α1,α2线性无关,α3,α4都不能用α1,α2线性表示,则α1,α
求下列极限:
已知某商品的需求价格弹性为EQ/EP=-P(lnP+1),且当P=1时,需求量为Q=1.(1)求商品对价格的需求函数;(2)当P→∞时,需求是否趋于稳定?
设f(x),g(x)在点x=0的某邻域内连续,且当x→00时f(x)与g(x)为等价无穷小量,则当x→0时∫0xf(t)(1一cost)dt是∫0xt2g(t)dt的()
随机试题
关于信息和数据,下列说法错误的是()
Tofindoutwhattheweatherisgoingtobe,mostpeoplegostraighttotheradio,televisionornewspapertogetanexpertweat
下列哪种跨膜物质转运的方式无饱和现象
某猪场夏季经常出现妊娠母猪流产、产出死胎和木乃伊胎,公猪一侧睾丸肿大。该病分离鉴定病原常用的实验动物是()
Alargenumberofdocumentsareusedinthemoderninternationaltradesuchasmarinebilloflading,letterofcredit,insurance
某外商投资企业记账本位币为人民币,外币业务采用交易发生日的即期汇率进行折算,按年计算汇兑损益。2016年6月30日进口一批商品,成本为500万美元,当日的即期汇率为1美元=6.5元人民币。2016年12月31日,由于市场销售价格下滑,该批存货出现减值迹象,
中华人民共和国成立后,中央提出过渡时期总路线的历史条件是( )
将n个同样的盒子和n只同样的小球分别编号为1,2,…,n.将这n个小球随机地投入n个盒子中,每个盒子中投入一只小球.问至少有一只小球的编号与盒子的编号相同的概率是多少?
(49)不属于编制人力资源计划的工具与技术。
有如下类定义:classAA{inta;Publie:AA(intn=0):a(n){}};classBB:publicAA{public:BB(intn)_________
最新回复
(
0
)