首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知A=,判断A能否对角化.若能对角化,求可逆矩阵P使得P﹣1AP为对角矩阵.
已知A=,判断A能否对角化.若能对角化,求可逆矩阵P使得P﹣1AP为对角矩阵.
admin
2020-06-05
28
问题
已知A=
,判断A能否对角化.若能对角化,求可逆矩阵P使得P
﹣1
AP为对角矩阵.
选项
答案
由矩阵A的特征多项式 |A-λE|=[*] =﹣(λ-1)
2
(A+2) 得到A的特征值λ
1
=λ
2
=1,λ
3
=﹣2. 当λ
1
=1时,解齐次方程组(A-E)x=0.由 A-E=[*] 得到基础解系p
1
=(﹣2,1,0)
T
,p
2
=(0,0,1)
T
,即A的属于特征值λ=1的特征向量c
1
p
1
+c
2
p
2
(c
1
,c
2
不全为零). 当λ
3
=﹣2时,解方程(﹣A-2E)x=0.由 ﹣A-2E=[*] 得到基础解系p
3
=(﹣5,1,3)
T
是属于λ
2
=﹣2的特征向量. 因为矩阵A有3个线性无关的特征向量,所以A能对角化.不妨取P=[*],则 P
﹣1
AP=[*]=diag(1,1,2).
解析
转载请注明原文地址:https://kaotiyun.com/show/lVv4777K
0
考研数学一
相关试题推荐
=_______.
一批产品共有10个正品和2个次品,任意抽取两次,每次抽一个,抽出后不再放回,则第二次抽出的是次品的概率为__________.
已知矩阵A=和对角矩阵相似,则a=________。
二次型f(x1,x2,x3)=(x1—x2)2+4x2x3的矩阵为___________.
设A是m×s矩阵,B是s×n矩阵,则齐次线性方程组BX=0和ABX=0是同解方程组的一个充分条件是()
设F1(x)与F2(x)为两个分布函数,其相应的概率密度f1(x)与f2(x)是连续函数,则必为概率密度的是()
设A,B是n阶矩阵,则C=的伴随矩阵是
设B为n阶可逆矩阵,A是与B同阶的方阵,且A2+AB+B2=0,则()
设A为三阶矩阵,1,1,2是A的三个特征值,α1,α2,α3分别为对应的三个特征向量,则().
若二次型f(x1,x2,x3)=2x12+x22+x32+2x1x2+tx2x3是正定的,则t的取值范围是______.
随机试题
悲剧给人们带来了强烈的审美愉快,使人能够()
关于血栓形成的论述
A.相变温度B.渗漏率C.峰浓度比D.krafft点E.AUC脂质体的质量评价指标
sugarcoatedtablets
业务收支以外货币为主的国内企业,可以选择某种外币为记账本位币,但编报的财务会计报告应当折算为人民币反映。()
由于雇主和员工往往存在(),所以要求最终被采纳的工资方案必须在某种程度上能够诱使雇主和员工都坚守自己的承诺。
在执行逮捕、拘留时,遇有(),不用搜查证也可以进行搜查。
函数f(x)=的间断点及类型是()
高级程序设计语言的特点是()。
【B1】【B4】
最新回复
(
0
)