首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
[2006年] 试确定A,B,C的值,使得ex(1+Bx+Cx2)=1+Ax+o(x3),其中o(x3)是当x→0时比x3高阶的无穷小.
[2006年] 试确定A,B,C的值,使得ex(1+Bx+Cx2)=1+Ax+o(x3),其中o(x3)是当x→0时比x3高阶的无穷小.
admin
2019-04-05
84
问题
[2006年] 试确定A,B,C的值,使得e
x
(1+Bx+Cx
2
)=1+Ax+o(x
3
),其中o(x
3
)是当x→0时比x
3
高阶的无穷小.
选项
答案
根据无穷小比较定义,利用命题1.1.6.2求之.又注意到所给方程右边为x的多项式,联想到e
x
的泰勒展开,比较x的同次幂系数,也可求得A,B,C的值. 由题设有[*]=0.因而 [*] 因[*]3x
2
=0,由命题1.1.6.2知, [*]{e
x
[1+B+(B+2C)x+Cx
2
]一A}=0, 即 1+B—A=0. ① 同理由[*] 得到[*]e
x
[1+2B+2C+(B+4C)x+Cx
2
]=0, 即 1+2B+2C=0. ② 再由[*] =(1/6)[*]{e
x
[1+3B+6C+(B+bC)x+Cx
2
]}=0, 得到 1+3B+6C=0. ③ 由②×3一③得到2+3B=0,即B=-2/3.将其代入式③、式①,分别得到C=1/6,A=1/3.
解析
转载请注明原文地址:https://kaotiyun.com/show/lXV4777K
0
考研数学二
相关试题推荐
设函数f(x)在(一∞,+∞)上有定义,在区间[0,2]上,f(x)=x(x2一4),若对任意的x都满足f(x)=kf(x+2),其中k为常数。写出f(x)在[一2,2]上的表达式;
证明方程x5-3x=1在1与2之间至少存在一个实根.
设两曲线y=(a>0)与y=在(x0,y0)处有公切线(如图3.13),求这两曲线与x轴围成的平面图形绕x轴旋转而成的旋转体的体积V.
假设函数f(x)和g(x)在[a,b]上存在二阶导数,并且g’’(x)≠0,f(A)=f(B)=g(a)=g(b)=0,试证:在开区间(a,b)内g(x)≠0;
设y=f(χ)为区间[0,1]上的非负连续函数.(1)证明存在c∈(0,1),使得在区间[0,c]上以f(c)为高的矩形面积等于区间[c,1]上以y=f(χ)为曲边的曲边梯形的面积;(2)设f(χ)在(0,1)内可导,且f′(χ)>-,
设{an},{bn},{cn}均为非负数列,且=∞,则必有()
设g(x)在x=0处二阶可导,且g(0)=g’(0)=0,设则f(x)在x=0处()
[2007年]如图1.3.2.2所示,连续函数y=f(x)在区间[一3,一2],[2,3]上的图形分别是直径为1的上、下半圆周,在区间[一2,0],[0,2]上的图形分别是直径为2的下、上半圆周,设F(x)=∫0xf(t)dt,则下列结论正确的是(
[2013年]曲线上对应于t=1的点处的法线方程为__________.
[2003年]设位于第一象限的曲线y=f(x)过点(√2,1/2),其上任一点P(x,y)处的法线与y轴的交点为Q,且线段PQ被x轴平分.已知曲线y=sinx在[0,π]上的弧长为l,试用l表示曲线y=f(x)的弧长s.
随机试题
钎焊前焊件表面准备工作没有()。
《中华人民共和国矿产资源法》规定:关闭矿山,必须提出()及有关采掘工程、不安全隐患、土地复垦利用、环境保护的资料,并按照国家规定报请审查批准。
企业实施科学化、规范化安全管理的工作基础是()。
我国的政策性银行有()。
下列关于出口信贷的说法中正确的是()。
根据会计法律制度的规定,记账凭证的保管期限为()年。
《中共中央关于推进农村改革发展若干重大问题的决定》指出,要继续推进农村综合改革,在()年基本完成乡镇机构改革任务。
追求与放弃都是正常的生活态度,有所追求就应有所放弃,有价值的人生,需要开拓进取、成就事业,但更要懂得正确和必要的放弃——这不是_____,而是一种_____。依次填入横线处的词语,最恰当的一组是()。
DebateovertheUseofRenewableEnergyAusubelofRockefellerUniversityinNewYork,USsaysthekeyrenewable(可再生的)ener
HowmanybuildingplacesdoestheBuildingServicelookateachmonthtoseeifthingsaregoingonwell?Whatshouldyoudoif
最新回复
(
0
)