首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
[2002年] 设函数f(x)在x=0的某个邻域内具有二阶连续导数,且f(0)≠0,f'(0)≠0,f"(0)≠0.证明:存在唯一的一组实数λ1,λ2,λ3,使得当h→0时,λ1f(h)+λ2f(2h)+λ3f(3h)一f(0)是比h2高阶的无穷小.
[2002年] 设函数f(x)在x=0的某个邻域内具有二阶连续导数,且f(0)≠0,f'(0)≠0,f"(0)≠0.证明:存在唯一的一组实数λ1,λ2,λ3,使得当h→0时,λ1f(h)+λ2f(2h)+λ3f(3h)一f(0)是比h2高阶的无穷小.
admin
2019-06-09
79
问题
[2002年] 设函数f(x)在x=0的某个邻域内具有二阶连续导数,且f(0)≠0,f'(0)≠0,f"(0)≠0.证明:存在唯一的一组实数λ
1
,λ
2
,λ
3
,使得当h→0时,λ
1
f(h)+λ
2
f(2h)+λ
3
f(3h)一f(0)是比h
2
高阶的无穷小.
选项
答案
为证三个实数唯一存在,设法找出三个方程,再用克拉默法则证其解唯一. 注意到f(0)≠0,f'(0)≠0,f"(0)≠O,也可用麦克劳林展开式证明. 证 因为当h→0时,λ
1
f(h)+λ
2
f(2h)+λ
3
f(3h)一f(0)是比h
2
高阶的无穷小,故其本身必是无穷小,即[*][λ
1
f(h)+λ
2
f(2h)+λ
3
f(3h)一f(0)]=0. 因f(x)在x=0处连续,得到 0=[*][λ
1
f(h)+λ
2
f(2h)+λ
3
f(3h)一f(0)]一(λ
1
+λ
2
+λ
3
一1)f(0), 而f(0)≠0,所以得 λ
1
+λ
2
+λ
3
一1=0. 又[*][λ
1
f"(h)+4λ
2
f"(2h)+9λ
3
f"(3h)] =[*]( λ
1
+4λ
2
+9λ
3
)f"(0). 因为f"(0)≠0,故得 λ
1
+4λ
2
+9λ
3
=0, ② 其中还包含0=[*][λ
1
f'(h)+2λ
2
f'(2h)+3λ
3
f'(3h)]=(1λ
1
+2λ
2
+3λ
3
)f'(0). 因为f'(0)≠0,有 λ
1
+2λ
2
+3λ
3
=0 ③ 因此由式①、式②、式③得λ
1
,λ
2
,λ
3
所满足的线性方程组: [*]因其系数行列式(范德蒙行列式)[*]=(2—1)(3—1)(3—2)=2≠0, 故由克拉默法则知,存在唯一的一组实数λ
1
,λ
2
,λ
3
,使得当h→0时,λ
1
f(h)+λ
2
f(2h)+λ
3
f(3h)一f(0)是比h
2
高阶的无穷小.
解析
转载请注明原文地址:https://kaotiyun.com/show/veV4777K
0
考研数学二
相关试题推荐
求不定积分:
设函数f(x)在(一∞,+∞)上有定义,在区间[0,2]上,f(x)=x(x2一4),若对任意的x都满足f(x)=kf(x+2),其中k为常数。写出f(x)在[一2,2]上的表达式;
f(x)=g(x)为奇函数且在x=0处可导,则f’(0)=__________。
设函数f(x)=,则f(x)在(一∞,+∞)内()
计算二重积分|x2+y2一1|dσ,其中D={(x,y)|0≤x≤1,0≤y≤1}。
计算二重积分I=,其中D={(r,θ)|0≤r≤secθ,0≤θ≤}。
设二次型f(x1,x2,x3)=2(a1x1+a2x2+a3x3)2+(b1x1+b2x2+b3x3)2,记证明二次型f对应的矩阵为2ααT+ββT;
(2004年试题,一)设则f(x)的间断点为x=_________.
随机试题
我国标准规定加速器旋转运动标尺的零刻度位置的检定周期
寻常狼疮好发于
下述消化性溃疡的特点错误的是
X线管管壳材料应具备的条件不包括
原子能级以电子伏特表示,下列正确的是
下列哪些民事诉讼案件法院不可以按撤诉处理?
利用直方图分布位置判断生产过程的质量状况和能力,如果质量特性数据的分布居中且边界与质量标准的上下界限有较大的距离,说明生产进程的质量能力()。
特雷诺指数运用的是系统风险而不是全部风险,因此当一项资产只是资产组合中的一部分时,特雷诺指数就可以作为衡量绩效表现的恰当指标加以应用。()
甲公司职工张某在工作中因先天性心脏病突发住院治疗3个月,住院期间甲公司按月向其支付病假工资。出院后,张某回公司上班。因该疾病导致活动受限,张某已不能从事原工作。公司又为其另行安排了其他工作岗位,但张某仍不能从事该工作。甲公司拟单方面解除与张某之间
Nosoonerhadtheygotinthewheatthanitbegantorainheavily.
最新回复
(
0
)