首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设向量组α1=(1,0,1)T,α2=(0,1,1)T,α3=(1,3,5)T不能由向量组β1=(1,1,1)T,β2=(1,2,3)T,β3=(3,4,a)T线性表示. (1)求a的值; (2)将β1,β2,β3由α1,α2,α3线性表示
设向量组α1=(1,0,1)T,α2=(0,1,1)T,α3=(1,3,5)T不能由向量组β1=(1,1,1)T,β2=(1,2,3)T,β3=(3,4,a)T线性表示. (1)求a的值; (2)将β1,β2,β3由α1,α2,α3线性表示
admin
2016-05-09
47
问题
设向量组α
1
=(1,0,1)
T
,α
2
=(0,1,1)
T
,α
3
=(1,3,5)
T
不能由向量组β
1
=(1,1,1)
T
,β
2
=(1,2,3)
T
,β
3
=(3,4,a)
T
线性表示.
(1)求a的值;
(2)将β
1
,β
2
,β
3
由α
1
,α
2
,α
3
线性表示.
选项
答案
(1)由于α
1
,α
2
,α
3
不能由β
1
,β
2
,β
3
表示,则由|α
1
,α
2
,α
3
|=1≠0,知α
1
,α
2
,α
3
线性无关, 因此,β
1
,β
2
,β
3
线性相关,即|β
1
,β
2
,β
3
|=[*]=a-5=0,解得a=5. (2)本题等价于求三阶矩阵C,使得(β
1
,β
2
,β
3
)=(α
1
,α
2
,α
3
)C. 可知C=(α
1
,α
2
,α
3
)
-1
(β
1
,β
2
,β
3
)=[*] 计算可得C=[*] 因此(β
1
,β
2
,β
3
)=(α
1
,α
2
,α
3
)[*]
解析
转载请注明原文地址:https://kaotiyun.com/show/lgw4777K
0
考研数学一
相关试题推荐
设函数y=y(x)由确定,则函数y=y(x)在x=0对应点处的切线为________.
设A,B是2阶矩阵,且A相似于B,A有特征值λ=1,B有特征值μ=-2,则|A+2AB-4B-2E|=____________.
A、 B、 C、 D、 C
设函数y=y(x)由方程x=dx确定,则=________
设A=可逆,a=(1,b,1)T(b>0)满足A*a=λa,A*是A的伴随矩阵求正较变换x=Qy化二次型f(x1,x2,x3)=xTAx为标准形
设A是n阶矩阵,齐次线性方程组Ax=0有两个线性无关的解,则()
设都是线性方程组AX=0的解向量,只要系数矩阵A为().
设A是n阶可逆方阵,将A的第i行和第j行对换后得到的矩阵记为B.证明B可逆;
n阶方阵A具有n个不同的特征值是A与对角阵相似的().
已知对于n阶方阵A,存在自然数k,使得Ak=0,试证明矩阵E-A可逆,并求出逆矩阵的表达式(层为n阶单位矩阵).
随机试题
某糖果厂生产两种糖果,A种糖果每箱获利润40元,B种糖果每箱获利润50元,其生产过程分为混合、烹调、包装三道工序,下袁为每箱糖果生产过程中所需平均时间(单位:分钟)每种糖果的生产过程中,混合的设备至多能用12小时,烹调的设备至多能用30小时,包装的设备
竖井的井壁应是耐火极限不低于()的非燃烧体。
某农场拟于2006年初在某河流上游植树造林500公顷,需要各类投资共5000万元。农场将承包该林地并拟于2012年初择伐树木后,将林地无偿移交给地方政府。预计所伐木材销售净收入为每公顷12万元。由于流域水土得到保持,气候环境得到改善,预计流域内3万
社会主义核心价值体系是建设和谐文化的根本,它的基本内容包括()。
张某因犯罪被判处剥夺政治权利3年,在此期间,张某的下列行为中符合法律规定的是()。
党的十九大提出以党的政治建设为统领,全面推进党的政治建设、思想建设、组织建设、作风建设、纪律建设,把制度建设贯穿其中,并特别强调把党的政治建设摆在首位。党的政治建设的首要任务是()
嗅探器改变了网络接口的工作模式,使得网络接口____________。
有职工工资表(职工号、姓名、日期、基本工资、奖金、工资合计),其中“工资合计”等于同一行数据的“基本工资”与“奖金”之和,在职工工资表中插入一行数据时(设一次只插入一行数据)能实现自动计算“工资合计”列的值的代码是______。A)ALTERTABLE
下列叙述中正确的是
在标准ASCII编码表中,数字码、小写英文字母和大写英文字母的前后次序是()。
最新回复
(
0
)