首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设二次型f(x1,x2,x3)=xTAx在正交变换x=Qy下的标准形为y12+y22,且Q的第三列为。 证明A+E为正定矩阵,其中E为三阶单位矩阵。
设二次型f(x1,x2,x3)=xTAx在正交变换x=Qy下的标准形为y12+y22,且Q的第三列为。 证明A+E为正定矩阵,其中E为三阶单位矩阵。
admin
2019-01-23
28
问题
设二次型f(x
1
,x
2
,x
3
)=x
T
Ax在正交变换x=Qy下的标准形为y
1
2
+y
2
2
,且Q的第三列为
。
证明A+E为正定矩阵,其中E为三阶单位矩阵。
选项
答案
证明:因为(A+E)
T
=A
T
+E=A+E,所以A+E为实对称矩阵。 又因为A的特征值为1,1,0,所以A+E特征值为2,2,1,都大于0,因此A+E为正定矩阵。
解析
转载请注明原文地址:https://kaotiyun.com/show/lmP4777K
0
考研数学三
相关试题推荐
设f(x)是满足=一1的连续函数,且当x→0时,∫0xf(t)dt是与xn同阶的无穷小量,求正整数n.
设=6,则a=().
证明级数收敛,且其和数小于1.
设实矩阵A=(aij)n×n的秩为n一1,αi为A的第i个行向量(i=1,2,…,n).求一个非零向量x∈Rn,使x与α1,α2,…,αn均正交.
已知A相似于B,即存在可逆阵P,使得P—1AP=B.求证:存在可逆阵Q,使得Q—1AQ=B的充分必要条件是存在与A可交换的可逆阵C,使得Q=CP.
已知齐次线性方程组(I)的基础解系为ξ1=[1,0,1,1]T,ξ2=[2,1,0,一1]T,ξ3=[0,2,1,一1]T,添加两个方程后组成齐次方程组(Ⅱ),求(Ⅱ)的基础解系.
设A是n阶方阵,证明:AnX=0和An+1X=0是同解方程组.
设二维随机变量(X,Y)在区域D=((x,y)|0<x<1,x2<)}上服从均匀分布.令(1)写出(X,Y)的概率密度f(x,y);(2)问U与X是否相互独立?并说明理由;(3)求Z=U+X分布函数F(x).
设二次型f(x1,x2,x3)=XTAX=ax12+2x22—2x32+2x1x3(b>0)中二次型的矩阵A的特征值之和为1,特征值之积为一12.(1)求a,b的值.(2)利用正交变换将二次型f化为标准形,并写出所用
设|x|≤1,由拉格朗日中值定理,存在θ∈(0,1),使arcsinx=.
随机试题
脊柱正中矢状面的结构特点。
简述美国心理学家加德纳的多元智力理论。
关于抵消的表述,下列选项中,不正确的是()。
为选择合格的供应商,应采用书面查询、现场调查等方式对供应商或分供应商就()等基本内容进行调查。
施工图设计过程中,如涉及重大设计变更问题应()。
请阅读下面录像题的情景叙述,找出情景叙述中秘书行为及工作环境中正确或错误的地方(应至少找出10处正误点)。人物:宏远公司总经理助理高叶、总经理李蒙、钟苗、五个部门经理物品:挂钟、电话、计算机、优盘、投影仪、会议室茶具、矿泉水、资料、手机
A.SellB.poorestC.shunD.perhapsPhrases:A.donot【T13】________itandcallithardnamesB.Itlooks【T1
某人驾车从A地赶往B地,前一半路程比计划多用时45min,平均速度只有计划的80%.若后一半路程的平均速度为120km/h,此人还能按原定时间到达B地.问A,B两地的距离为[]km.
Howeverbadthesituationis,themajorityisunwillingtoriskchange.
PeopleintheUnitedStateslovetheirdogsandtreatthemwell.Theyusemanyexpressionswiththeword"dog".Herearesomeex
最新回复
(
0
)