首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设二次型f(x1,x2,x3)=xTAx在正交变换x=Qy下的标准形为y12+y22,且Q的第三列为。 证明A+E为正定矩阵,其中E为三阶单位矩阵。
设二次型f(x1,x2,x3)=xTAx在正交变换x=Qy下的标准形为y12+y22,且Q的第三列为。 证明A+E为正定矩阵,其中E为三阶单位矩阵。
admin
2019-01-23
69
问题
设二次型f(x
1
,x
2
,x
3
)=x
T
Ax在正交变换x=Qy下的标准形为y
1
2
+y
2
2
,且Q的第三列为
。
证明A+E为正定矩阵,其中E为三阶单位矩阵。
选项
答案
证明:因为(A+E)
T
=A
T
+E=A+E,所以A+E为实对称矩阵。 又因为A的特征值为1,1,0,所以A+E特征值为2,2,1,都大于0,因此A+E为正定矩阵。
解析
转载请注明原文地址:https://kaotiyun.com/show/lmP4777K
0
考研数学三
相关试题推荐
证明级数收敛,且其和数小于1.
已知A=[α1,α2,α3,α4],其中α1,α2,α3,α4为四维列向量,方程组Ax=0的通解为k(2,一1,2,5)T,则α4可由α1,α2,α3,表示为__________.
设η*是非齐次方程组AX=b的一个特解,ξ1,ξ2,…,ξn—r是对应齐次方程组AX=0的基础解系.令η0=η*,η1=ξ1+η*,η2=ξ2+η*,…,ηn—r=ξn—r+η*.证明:非齐次方程的任一解η都可表示成η=μ0η0+μ0η
计算二重积分I=,其中积分区域为D={(x,y)||x|≤1,0≤y≤2}.
求二重积分I=xydxdy,其中积分区域D={(x,y)|x2+y2≥1,x2+y2—2x≤0,y≥0}.
假设D={(x,y)|0≤x≤2,0≤y≤1},随机变量X和Y的联合分布是区域D上的均匀分布.考虑随机变量(1)求X和Y的相关系数ρ;(2)求U和V的相关系数γ.
设X1,X2,…,Xn是来自总体X的简单随机样本,是样本均值,C为任意常数,则().
设f(x)在[0,1]上连续,在(0,1)内可导,且ef(x)arctanxdx=1,f(1)=ln2,试证:存在点ξ∈(0,1),使得(1+ξ2)f’(ξ)arctanξ=一1.
二次型f(x1,x2,x3)=x12+3x22+x32+2x1x2+2x1x3+2x2x3,则f的正惯性指数为____________.
随机试题
景观设计行业是现代服务业,必须满足委托方的全部利益。()
硬盘存放主引导记录的主引导扇区一般位于____________。
()是指组织目标的实现与实现组织目标所付代价之间的一种比例关系。
根据《建筑安装工程费用项目组成》(建标[2003]206号)文件的规定,下列费用中属于直接工程费中人工费的是()。
科目汇总表的缺点主要不能反映()。
近年来,有个别地方出现孩子辍学现象,这与某些家长的认识有关系。有些农村家长认为,反正孩子今后长大要外出打工,现在根本没必要上学读书。显然,这种认识是错误的。据此,可以推出()。
Thetelevisionnetworksbelievethattheperiodbetween6p.m.and11p.m.isthe________televisionviewingtime.
遵义会议是党的历史上一个生死攸关的转折点,标志着中国共产党在政治上开始走向成熟,它集中解决了当时具有决定意义的()问题。
表示X和Y之中有一个是奇数的表达式是______。
IfyourchildisaskingforUggbootsorapriceyhottoyfortheholidays,it’stimeforateachablemoment.Evenifyourkidh
最新回复
(
0
)