首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
以下三个命题, ①若数列{un)收敛A,则其任意子数列必定收敛于A; ②若单调数列{xn}的某一子数列收敛于A,则该数列必定收敛于A; ③若数列{x2n}与{xn+}都收敛于A,则数列{xn}必定收敛于A正确的个数为 ( )
以下三个命题, ①若数列{un)收敛A,则其任意子数列必定收敛于A; ②若单调数列{xn}的某一子数列收敛于A,则该数列必定收敛于A; ③若数列{x2n}与{xn+}都收敛于A,则数列{xn}必定收敛于A正确的个数为 ( )
admin
2019-02-01
50
问题
以下三个命题,
①若数列{u
n
)收敛A,则其任意子数列
必定收敛于A;
②若单调数列{x
n
}的某一子数列
收敛于A,则该数列必定收敛于A;
③若数列{x
2n
}与{x
n+
}都收敛于A,则数列{x
n
}必定收敛于A正确的个数为 ( )
选项
A、0
B、1
C、2
D、3
答案
D
解析
对于命题①,由数列收敛的定义可知,若数列{u
n
}收敛于A,则对任意给定的ε>0,存在自然数N,当n>N时,恒有|u
0
一A|<ε.则当n
i
>N时,恒有 |u
ni
一A|<ε.因此数列{u
ni
}也收敛于A,可知命题正确.
对于命题②,不妨设数列{x
n
}为单调增加的,即 x
1
≤x
2
≤…≤x
n
≤…,其中某一给定子数列
收敛于A,则对任意给定的ε>0,存在自然数N,当n
i
>N时,恒有
由于数列{x
n
}为单调增加的数列,对于任意的n>N,必定存在n
i
≤n≤n
i+1
,有
从而 |x
n
一A|<ε.
可知数列{x
n
}收敛于A因此命题正确.
对于命题③,
由极限的定义可知,对于任意给定的ε>0,必定存在
自然数N
1
,N
2
:
当2n>N
1
时,恒有|x
2n
一A|<ε;
当2n+1>N
2
时,恒有|x
2n+1
一A|<ε.
取N=max{N
1
,N
2
},则当n>N时,总有|x
n
一A|<ε.因此
可知命题正确.故答案选择(D).
转载请注明原文地址:https://kaotiyun.com/show/lrj4777K
0
考研数学二
相关试题推荐
已知向量组α1,α2,…,αs+1(s>1)线性无关,βi=αi+tαi+1,i=1,2,…,s.证明:向量组β1,β2,…,βs线性无关.
设A是三阶矩阵,ξ1,ξ2,ξ3是三个线性无关的三维列向量,满足Aξi=ξi,i=1,2,3,则A=____________.
设A,B是n阶矩阵,证明:AB和BA的主对角元的和相等.(方阵主对角元的和称为方阵的迹,记成trA,即trA=aij)
设f(x)在[0,+∞)上可导,f(0)=0,其反函数为g(x),若∫xx+f(x)g(t一x)dt=x2ln(1+x).求f(x).
已知数列{xn}的通项xn=(一1)n一1,n=1,2,3….
设f(x)在[a,b]上有定义,M>0且对任意的x,y∈[a,b],有|f(x)-f(y)|≤M|x-y|k证明:当k>1时,f(x)三常数.
设0<x1<3,xn+1=(n=1,2,…),证明数列{xn}的极限存在,并求此极限.
设则二次型的对应矩阵是__________。
下列命题成立的是().
设且A~B.求a;
随机试题
爆炸按性质分类,可分为()。
一切科学认识的首要前提是()
关于沟通的形式,描述正确的是
A.咳嗽B.喘C.哮D.短气E.少气自觉呼吸短促不相连接,气短不足以息,是
下列关于诉讼调解的说法,不正确的有:
每经过一个计息期,要将所生利息加入本金再计算利息的是()。
()是指银行对国际贸易延期付款方式中出口商持有的远期承兑汇票或本票进行无追索权的贴现。
()主要是指各国货币当局持有的对外流动性资产,是国际储备最主要的组成部分。
设Y=lnX~N(μ,σ2),而X1,…,Xn为取自总体的X的简单样本,试求EX的最大似然估计.
In2013,HarrisAcademy—aschoolinsouthLondon—banneditsstudentsfromusingslang.Postersaroundtheschoolshowedalisto
最新回复
(
0
)