首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设有两个n维向量组(I)α1,α2,…,αs,(Ⅱ)β1,β2,…,βs,若存在两组不全为零的数k1,k2,…,ks,λ1,λ2,…,λs,使(k1+λ1)α1+(k2+λ2)α2+…+(ks+λs)αs+(k1一λ1)β1+…+(ks一λs)βs=0,则
设有两个n维向量组(I)α1,α2,…,αs,(Ⅱ)β1,β2,…,βs,若存在两组不全为零的数k1,k2,…,ks,λ1,λ2,…,λs,使(k1+λ1)α1+(k2+λ2)α2+…+(ks+λs)αs+(k1一λ1)β1+…+(ks一λs)βs=0,则
admin
2016-06-25
36
问题
设有两个n维向量组(I)α
1
,α
2
,…,α
s
,(Ⅱ)β
1
,β
2
,…,β
s
,若存在两组不全为零的数k
1
,k
2
,…,k
s
,λ
1
,λ
2
,…,λ
s
,使(k
1
+λ
1
)α
1
+(k
2
+λ
2
)α
2
+…+(k
s
+λ
s
)α
s
+(k
1
一λ
1
)β
1
+…+(k
s
一λ
s
)β
s
=0,则 ( )
选项
A、α
1
+β
1
,…,α
s
+,α
1
一β
1
,…,α
s
一β
s
线性相关
B、α
1
,…,α
s
及β
1
,…,β
s
均线性无关
C、α
1
,α
s
及β
1
,…,β
s
均线性相关
D、α
1
+β
1
,…,α
s
+β
s
,α
1
一β
1
,…,α
s
一β
s
线性无关
答案
A
解析
存在不全为0的k
1
,k
2
,…,k
s
,λ
1
,λ
2
,…,λ
s
使得
(k
1
+λ
1
)α
1
+(k
2
+λ
2
)α
2
+…+(k
s
+λ
s
)α
s
+(k
1
一λ
1
)β
1
+(k
2
一λ
2
)β
2
+…+(k
s
一λ
s
)β
s
=0,
整理得
k
1
(α
1
+β
1
)+k
2
(α
2
+β
2
)+…+k
s
(α
s
+β
s
)+λ
1
(α
1
一β
1
)+λ
2
(α
2
一β
2
)+…+λ
s
(α
s
一β
s
)=0,
从而得α
1
+β
1
,…,α
s
+β
s
,α
1
一β
1
,…,α
s
一β
s
线性相关.
转载请注明原文地址:https://kaotiyun.com/show/JBt4777K
0
考研数学二
相关试题推荐
设f(x)∈C[a,b],在(a,b)内二阶可导,且f″(x)≥0,φ(x)是区间[a,b]上的非负连续函数,且∫abφ(x)dx=1.证明:∫abf(x)φ(x)dx≥f[∫abxφ(x)dx].
设f(x)=∫0xecostdt,求∫0πf(x)cosxdx.
设u=u(x,y)由方程组u=f(x,y,z,t),g(y,z,t)=0,h(z,t)=0确定.其中f,g,h连续可偏导且
求下列不定积分。
如图,曲线段的方程为y=f(x),函数f(x)在区间[0,a]上有连续的导数,则定积分∫0axf’(x)dx等于________。
试确定常数a和b使下式成立
证明方程ex=-x2+ax+b不可能有三个不同的根.
求方程x(lnx-lny)dy-ydx=0的通解。
设F(x,y)是一个二维随机向量(X,Y)的分布函数,x1
设已知线性方程组Ax=6存在2个不同的解。求λ.a;
随机试题
牛肉食品的熟度可以通过测定原料的中心温度来判断,如全熟的牛肉中心温度为________。
卵巢良性肿瘤中临床最常见的是
A.肺结核B.细支气管肺泡癌C.肺脓肿D.周围型肺癌E.肺癌(中央型)女性,60岁。咳嗽5个月,大量泡沫痰,痰中带血2个月,胸片示双肺多发性小结节影。最有可能的诊断是
患者,女,50岁。因内痔住院,拟行手术治疗,经检查发现直肠后正中位有一痔核,在截石位是
Word文档的扩展名为()。
现在公文中不应该使用“兹”、“特此”、“勿”、“商榷”、“酌情”等文言词语。()
下列属于老舍的经典文学作品的是:
例如:男:小王,帮我开一下门,好吗?谢谢!女:没问题。您去超市了?买了这么多东西。问:男的想让小王做什么?A开门√B拿东西C去超市买东西
Ifwewanttobehealthyandenjoylife,weshouldnotonlyworkhardbutalsohaverecreation.Manypeoplelikewatchingsport
Theperiodofadolescence,i.e.,thepersonbetweenchildhoodandadulthood,maybelongorshort,dependingonsocialexpectati
最新回复
(
0
)