首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[0,2]上连续,在(0,2)内二阶可导,且f(x)dx=f(2),试证:存在一点ξ∈(0,2),使得f"(ξ)=0.
设f(x)在[0,2]上连续,在(0,2)内二阶可导,且f(x)dx=f(2),试证:存在一点ξ∈(0,2),使得f"(ξ)=0.
admin
2017-07-26
64
问题
设f(x)在[0,2]上连续,在(0,2)内二阶可导,且
f(x)dx=f(2),试证:存在一点ξ∈(0,2),使得f"(ξ)=0.
选项
答案
[*] 在[a,2]上f(x)满足洛尔定理的全部条件,由洛尔定理,存在一点b∈(a,2),使得f’(b)=0,又f’(x)在[a,b]上满足洛尔定理的全部条件,由洛尔定理,存在点ξ∈(a,b)[*](0,2),使得f"(ξ)=0.
解析
要证f"(ξ)=0,对f(x)可用两次洛尔定理来证明.用两次洛尔定理的关键是在[0,2]内构造使得f(a)=f(2)的区间和使f’(b)=f’(c)的区间[a,2]与[b,c].[a,2]可由积分中值定理得到,[b,c]可由已知极限和洛尔定理获得.
转载请注明原文地址:https://kaotiyun.com/show/luH4777K
0
考研数学三
相关试题推荐
若f(x)不变号,且曲线y=f(x)在点(1,1)处的曲率圆为x2+y2=2,则函数f(x)在区间(1,2)内
A、 B、 C、 D、 D
设A是n阶矩阵,且A的行列式|A|=0,则A________.
设n阶矩阵A与B等价,则必有().
函数f(μ,ν)由关系式f[xg(y),y]=x+g(y)确定,其中函数g(y)可微,且g(y)≠0,则=_____________.
设向量组a1,a2,a3线性相关,向量组a2,a3,a4线性无关,问:(Ⅰ)a1能否由a2,a3,线性表出?证明你的结论.(Ⅱ)a4能否由a1,a2,a3铴线性表出?证明你的结论.
已知线性方程Ax=β的增广矩阵可化为且方程组有无穷多解,则参数A的取值必须满足().
设α1,α2,α3均为3维列向量,记矩阵A=(α1,α2,α3),B=(α1+α2+α3,α1+2α2+4α3,α1+3α2+9α3).如果丨A丨=1,那么丨B丨=__________.
证明:当x>0时,arctanx+。
设f(x)在[a,b]上连续,在(a,b)内可导(a>0).证明:存在ξ,η∈(a,b),使得
随机试题
IBM从计算机终端供应商转变为网络咨询、服务商,体现了()
可存于唾液、初乳、呼吸道及肠道等外分泌液中的是
A.肾血管痉挛而致急性肾衰竭B.前列腺素合成障碍C.肾问质纤维化D.阻塞肾小管、肾小球E.肾小管坏死去甲肾上腺素会导致
在财务管理实务中,通常以()作为无风险报酬率。
通常情况下,企业经过努力可以达到的成本标准,这一标准考虑了生产过程中不可避免的损失、故障和偏差。则该标准成本为()。
李老师在教《落花生》一课时,让学生各抒己见,谈谈该做什么样的人。李老师运用的教学方法是()。
强调古典自由教育,注重经典名著的学习,对美国高等教育和成人教育产生了广泛的影响的教育思潮是
(2016年真题)下列选项中,可以认定为建筑物区分所有权的业主的有()。
一江南园林拟建松、竹、梅、兰、菊5个园子。该园林拟设东、南、北3个门,分别位于其中3个园子。这5个园子的布局满足如下条件:(1)如果东门位于松园或菊园,那么南门不位于竹园;(2)如果南门不位于竹园,那么北门不位于兰园;(3)如果菊园在园林的中心,那么
Weliveandlearn.
最新回复
(
0
)