首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[0,2]上连续,在(0,2)内二阶可导,且f(x)dx=f(2),试证:存在一点ξ∈(0,2),使得f"(ξ)=0.
设f(x)在[0,2]上连续,在(0,2)内二阶可导,且f(x)dx=f(2),试证:存在一点ξ∈(0,2),使得f"(ξ)=0.
admin
2017-07-26
98
问题
设f(x)在[0,2]上连续,在(0,2)内二阶可导,且
f(x)dx=f(2),试证:存在一点ξ∈(0,2),使得f"(ξ)=0.
选项
答案
[*] 在[a,2]上f(x)满足洛尔定理的全部条件,由洛尔定理,存在一点b∈(a,2),使得f’(b)=0,又f’(x)在[a,b]上满足洛尔定理的全部条件,由洛尔定理,存在点ξ∈(a,b)[*](0,2),使得f"(ξ)=0.
解析
要证f"(ξ)=0,对f(x)可用两次洛尔定理来证明.用两次洛尔定理的关键是在[0,2]内构造使得f(a)=f(2)的区间和使f’(b)=f’(c)的区间[a,2]与[b,c].[a,2]可由积分中值定理得到,[b,c]可由已知极限和洛尔定理获得.
转载请注明原文地址:https://kaotiyun.com/show/luH4777K
0
考研数学三
相关试题推荐
3
设函数f(x)在点x。处有连续的二阶导数,证明
设A是n阶反对称矩阵,举一个4阶不可逆的反对称矩阵的例子;
设向量组α1,α2,α3线性无关,则下列向量组线性相关的是().
已知线性方程Ax=β的增广矩阵可化为且方程组有无穷多解,则参数A的取值必须满足().
μ(x,y)=x2-xy+y2,L为抛物线y=x2自原点至点A(1,1)的有向弧段n为L的切向量顺时针旋转π/2角所得的法向量为函数μ沿法向量n的方向导数,计算
设f(μ,ν)具有二阶连续偏导数,且满足又g(x,y)=
设f(x)在[0,2]上连续,在(0,2)内可导,f(0)=f(2)=0,且|f’(x)|≤2.证明:|∫02f(x)dx|≤2.
设函数f(x)和g(x)在区间[a,b]上连续,在区间(a,b)内可导,且f(a)=g(b)=0,g’(x)<0,试证明存在ξ∈(a,b)使
设都是正项级数,试证:(1)若收敛;(2)若收敛;(3)若都收敛;(4)若收敛。
随机试题
徐志摩《再别康桥》的诗性美感主要体现在
女,30岁,三年前结婚后经常发生腰痛,尿急、尿频、尿痛,并有发热而就诊。确诊为泌尿系统感染所致,其最常见的病原菌是
葛根黄芩黄连汤的药物组成是
哮喘发作时,对缓解支气管痉挛作用最快的是
下列有关教学评价的叙述中,阐述最恰当的一项是()。
研究有关公安工作的方针、政策,制定公安法制工作总体规划属于()。
大脑对生物钟的反应大概可以分为两种:“严格听话型”和“不管不问型”。大脑皮层下的区域,包括中脑和丘脑等结构就属于前者——它们是生物钟的忠实哨兵,无论睡没睡好,活跃程度都还能与生物钟节律保持一致。而大脑皮层的大部分区域,比如前额皮质等,它们就不大买生物钟指令
f(x)在[0,1]上有连续导数,且f(0)=0,证明:存在ξ∈[0,1],使得f’(ξ)=2∫01f(x)dx.
I’llgotoShanghai______amonth’stime.
Itisallverywelltoblametrafficjams,thecostofpetrolandthequickpaceofmodernlife,butmannersontheroadsarebec
最新回复
(
0
)