首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[0,2]上连续,在(0,2)内二阶可导,且f(x)dx=f(2),试证:存在一点ξ∈(0,2),使得f"(ξ)=0.
设f(x)在[0,2]上连续,在(0,2)内二阶可导,且f(x)dx=f(2),试证:存在一点ξ∈(0,2),使得f"(ξ)=0.
admin
2017-07-26
40
问题
设f(x)在[0,2]上连续,在(0,2)内二阶可导,且
f(x)dx=f(2),试证:存在一点ξ∈(0,2),使得f"(ξ)=0.
选项
答案
[*] 在[a,2]上f(x)满足洛尔定理的全部条件,由洛尔定理,存在一点b∈(a,2),使得f’(b)=0,又f’(x)在[a,b]上满足洛尔定理的全部条件,由洛尔定理,存在点ξ∈(a,b)[*](0,2),使得f"(ξ)=0.
解析
要证f"(ξ)=0,对f(x)可用两次洛尔定理来证明.用两次洛尔定理的关键是在[0,2]内构造使得f(a)=f(2)的区间和使f’(b)=f’(c)的区间[a,2]与[b,c].[a,2]可由积分中值定理得到,[b,c]可由已知极限和洛尔定理获得.
转载请注明原文地址:https://kaotiyun.com/show/luH4777K
0
考研数学三
相关试题推荐
设f(x,y)在[a,b]×[c,d]上连续,,证明:gxy=gyx(x,y)=f(x,y)(a<x<b,c<y<d).
设n阶矩阵A的各列元素之和为2且|A|=4,则它的伴随矩阵A的各列元素之和为_____.
设中与A等价的矩阵有()个.
设A为3阶矩阵,P为3阶可逆矩阵,且若P=(α1,α2,α3),Q=(α1+α2,α2,α3),则Q-1AQ=().
试用Mathematica求出下列函数的导数:(1)y=sinx3;(2)y=arctan(1nx);(3)y=(1+1/x)x;(4)y=2xf(x2).
设f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=f(1),证明:存在ξ,η∈(0,1),使得f’(ξ)+f’(η)=0.
x)在(一∞,+∞)上连续,且f(x)=∫0xf(t)出,试证:f(x)=0(-∞<x<+∞).
设试证明:P(A)+P(B)一P(C)≤1.
设函数f(x)在[0,3]上连续,在(0,3)内可导,且f(0)+f(1)+f(2)=3,f(3)=1.试证:必存在ξ∈(0,3),使f’(ξ)=0.
对于任意二事件A1,A2,考虑二随机变量试证明:随机变量X1和X2独立的充分必要条件是事件A1和A2相互独立.
随机试题
蒿芩清胆汤组成药物中无
在容器分析中,滴定管的读数应保留小数点后()数字。
设函数f(x)在x=x0处可导,且f’(x0)=-1,则=()
A.5~10天B.10~14天C.24~36小时D.24~30小时E.3~5天急性心肌梗死时,肌红蛋白从升高到恢复正常的时间为
A.心房颤动B.心房扑动C.窦性心动过速D.阵发性房性心动过速E.阵发性室性心动过速可见异位P波提示
子宫肌瘤气滞血瘀型的首选方是
混凝土的()是指混凝土抵抗环境介质作用并长期保持其良好的使用性能和外观完整性的能力。
下列需要永久保存的会计档案是()。
Anthony’s______expressionmaskedanessentialcheerfulnature.
Sharingaccommodationis______.Studentswhosharewithothersinaccommodationwillprobablyspendanaverageof______.
最新回复
(
0
)