首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设曲线积分上∫Ly2f′(χ)dχ+2y[f′(χ)-χ]dy与路径无关,其中f(χ)具有二阶连续的导数,且f(0)=1,f′(0)=0。求f(χ),并计算曲线积分∫(0,0)(1,1)y2f′(χ)dχ+2y[f′(χ)-χ]dy。
设曲线积分上∫Ly2f′(χ)dχ+2y[f′(χ)-χ]dy与路径无关,其中f(χ)具有二阶连续的导数,且f(0)=1,f′(0)=0。求f(χ),并计算曲线积分∫(0,0)(1,1)y2f′(χ)dχ+2y[f′(χ)-χ]dy。
admin
2017-11-30
82
问题
设曲线积分上∫
L
y
2
f′(χ)dχ+2y[f′(χ)-χ]dy与路径无关,其中f(χ)具有二阶连续的导数,且f(0)=1,f′(0)=0。求f(χ),并计算曲线积分∫
(0,0)
(1,1)
y
2
f′(χ)dχ+2y[f′(χ)-χ]dy。
选项
答案
令P(χ,y)=y
2
f′(χ),Q(χ,y)=2y[f′(χ)-χ], 已知该积分与路径无关,则有[*],即 2y[f〞(χ)-1]=2yf′(χ), 化简为f〞(χ)-f′(χ)=1,该方程为可分离变量方程,即[*]=dx两边同时积 分可得, f′(χ)=Ce
χ
-1, 代入初始条件f′(0)=0可得C=1,故f′(χ)=e
χ
-1,两边同时积分可得 f(χ)=e
χ
-χ+C
1
, 将初始条件f(0)=1代入,可得C
1
=0,故f(χ)=e
χ
-χ。 ∫
(0,0)
(1,1)
yf′(χ)dχ+2y[f(χ)-χ]dy与路径无关,则可选取折线路径简化计算, 其中L
1
:y=0,χ:0→1,L
2
:χ=1,y:0→1, ∫
(0,0)
(1,1)
y
2
f′(χ)dχ+2y[f′(χ)-χ]dy=∫
(0,0)
(1,1)
y
2
(e
χ
-1)dχ+2y(e
χ
-1-χ)dy =[*]y
2
(e
χ
-1)dχ+2y(e
χ
-1-χ)dy+[*]y
2
(e
χ
-1)dχ+2y(e
χ
-1-χ)dy =∫
0
1
2(e-2)ydy=e-2。
解析
转载请注明原文地址:https://kaotiyun.com/show/lyr4777K
0
考研数学一
相关试题推荐
设A为m×n阶实矩阵,且r(A)=n.证明:ATA的特征值全大于零.
记曲面z=x2+y2一2x-y在区域D:x≥0,y≥0,2x+y≤4上的最低点P处的切平面为π,曲线在点Q(1,1,一2)处的切线为l,求点P到直线l在平面π上的投影l’的距离d.
求函数f(x,y)=x2一xy+y2在点M(1,1)沿与x轴的正向组成a角的方向1上的方向导数,在怎样的方向上此导数有:(1)最大的值;(2)最小的值;(3)等于0.
求下列曲面的方程:以为准线,母线平行于z轴的柱面方程;
直线L的方向向量为s=(一1,0,2),而平面π的法向量n=(2,一1,1),所以s.n=一1×2+0×(一1)+2×1=0,所以s⊥n,所以直线L与平面π平行,而直线上一点(1,1,一2)代入平面方程2x—y+z+1=0中,有:2×1—1+(一2)+1=
设曲线L是抛物柱面x=2y2与平面x+z=1的交线.求曲线L分别绕各个坐标轴旋转一周的曲面方程.
求直线在平面π:a—y+3z+8=0的投影方程.
设曲线C:x2+y2+x+y=0,取逆时针方向,证明:
随机试题
A.胸廓对称,病侧呼吸运动减弱、语颤增强可见于B.病侧胸廓塌陷,呼吸运动减弱、语颤减弱可见于C.胸廓呈桶状,两侧呼吸运动减弱,语颤减弱可见于D.病侧胸廓饱满,呼吸运动减弱或消失、语颤消失可见于E.胸廓对称,两侧呼吸运动均等、语颤正常可见于气胸
关于冠内附着体,下述哪一项说法是错误的
以下哪项诊断最正确( )。如何治疗最恰当( )。
某分部工程中各项工作问逻辑关系见下表,相应的双代号网络计划如下图所示,图中的错误有()
下面的审计证据中,其证明力由强到弱排列的是()。
证券经营机构从事证券自营买卖的风险可分为()
根据资产信用风险的大小,将资产分为()风险档次。
根据现行增值税的规定,下列混合销售行为中,应当征收增值税的有()。
谢赫形容两晋画家()的画作为“六法颇为兼善,虽不备该形似,而妙有气韵。”
师父分别给了两个徒弟一桶水和一桶鱼,要求他们去放生。第一个徒弟直接提着一桶水和一桶鱼去放生,到了放生的地方,鱼却死了一大半,而第二个徒弟把鱼分别放在两个水桶中去放生,鱼基本上没有死,谈谈这个故事对你的启示。
最新回复
(
0
)