首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设曲线积分上∫Ly2f′(χ)dχ+2y[f′(χ)-χ]dy与路径无关,其中f(χ)具有二阶连续的导数,且f(0)=1,f′(0)=0。求f(χ),并计算曲线积分∫(0,0)(1,1)y2f′(χ)dχ+2y[f′(χ)-χ]dy。
设曲线积分上∫Ly2f′(χ)dχ+2y[f′(χ)-χ]dy与路径无关,其中f(χ)具有二阶连续的导数,且f(0)=1,f′(0)=0。求f(χ),并计算曲线积分∫(0,0)(1,1)y2f′(χ)dχ+2y[f′(χ)-χ]dy。
admin
2017-11-30
50
问题
设曲线积分上∫
L
y
2
f′(χ)dχ+2y[f′(χ)-χ]dy与路径无关,其中f(χ)具有二阶连续的导数,且f(0)=1,f′(0)=0。求f(χ),并计算曲线积分∫
(0,0)
(1,1)
y
2
f′(χ)dχ+2y[f′(χ)-χ]dy。
选项
答案
令P(χ,y)=y
2
f′(χ),Q(χ,y)=2y[f′(χ)-χ], 已知该积分与路径无关,则有[*],即 2y[f〞(χ)-1]=2yf′(χ), 化简为f〞(χ)-f′(χ)=1,该方程为可分离变量方程,即[*]=dx两边同时积 分可得, f′(χ)=Ce
χ
-1, 代入初始条件f′(0)=0可得C=1,故f′(χ)=e
χ
-1,两边同时积分可得 f(χ)=e
χ
-χ+C
1
, 将初始条件f(0)=1代入,可得C
1
=0,故f(χ)=e
χ
-χ。 ∫
(0,0)
(1,1)
yf′(χ)dχ+2y[f(χ)-χ]dy与路径无关,则可选取折线路径简化计算, 其中L
1
:y=0,χ:0→1,L
2
:χ=1,y:0→1, ∫
(0,0)
(1,1)
y
2
f′(χ)dχ+2y[f′(χ)-χ]dy=∫
(0,0)
(1,1)
y
2
(e
χ
-1)dχ+2y(e
χ
-1-χ)dy =[*]y
2
(e
χ
-1)dχ+2y(e
χ
-1-χ)dy+[*]y
2
(e
χ
-1)dχ+2y(e
χ
-1-χ)dy =∫
0
1
2(e-2)ydy=e-2。
解析
转载请注明原文地址:https://kaotiyun.com/show/lyr4777K
0
考研数学一
相关试题推荐
设∑是平面在第一卦限部分的下侧,则化成对面积的曲面积分为I=__________.
设函数f(x)在闭区间[0,1]上连续,在开区间(0,1)内大于零,并且满足又曲线y=f(x)与x=1,y=0所围的图形S的面积值为2.求函数y=f(x),并问a为何值时,图形S绕x轴旋转一周所得的旋转体的体积最小.
设f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b)=0,.证明:
曲线的曲率及曲率的最大值分别为__________.
设函数y=f(x)由参数方程所确定,其中φ(t)具有二阶导数,且已知,证明:函数φ(t)满足方程
设有曲面S:2x2+4y2+z2=4与平面π:2x+2y+z+5=0,试求曲面S上的点及其上的切平面与法线方程,使该切平面与平面π平行;
求直线在平面π:a—y+3z+8=0的投影方程.
证明:方程x2=lnx(a
随机试题
从2007年8月15日开始,储蓄存款利息所得个人所得税的适用税率减按____的比例税率执行。
女性,25岁,低热,便秘腹泻交替3年,查:右下腹5em×5em肿块,质中等,较固定,轻压痛。
不属于肺炎链球菌致病物质的是()
陆某以其8岁的儿子陆义为被保险人投了一份5年期的人身保险,指定受益人为其妻子李某,合同履行两年后陆某与李某离婚,陆义由父亲陆某抚养。后陆义被陆某的表弟佘某收养,不久陆义患病住院,由于医院的重大失误,致使陆义手术后落下终身残疾。依照《保险法》,下列有关保险金
见票即付的汇票,自出票日起()内向付款人提示付款。
在准备采取直复营销活动时,直复人员必须()。顾客寿命价值并不在于他某一次购买产品的数额,而是他()。
某车间单一生产产品,共有车床10台,全年工作日为256天,两班制,每班工作8小时,设备计划修理时间占工作时间的15%,每台机器每小时生产20件产品,那么该设备的年生产能力是()件。
佛教在世界的传播分三条路线,其中南传佛教以()为主。
下列自然资源只能属于国家所有的是
系统规划与管理师的最终职责是确保整体目标完成,如果团队成员无法完成任务,一般有以下原因,下列说法错误的是()。
最新回复
(
0
)