首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(Ⅰ)已知f(x)=,在(一∞,+∞)存在原函数,求常数A以及f(x)的原函数; (Ⅱ)设|y|<1,求F(y)=∫—11|x一y| exdx.
(Ⅰ)已知f(x)=,在(一∞,+∞)存在原函数,求常数A以及f(x)的原函数; (Ⅱ)设|y|<1,求F(y)=∫—11|x一y| exdx.
admin
2017-10-23
89
问题
(Ⅰ)已知f(x)=
,在(一∞,+∞)存在原函数,求常数A以及f(x)的原函数;
(Ⅱ)设|y|<1,求F(y)=∫
—1
1
|x一y| e
x
dx.
选项
答案
(Ⅰ)易求得 [*] 仅当A=0时f(x)在x=0连续.于是f(x)在(一∞,+∞)连续,从而存在原函数.当A≠0时,x=0是f(x)的第一类间断点,从而f(x)在(一∞,+∞)不存在原函数.因此求得A=0.下求f(x)的原函数. 被积函数是分段定义的连续函数,它存在原函数,也是分段定义的.由于原函数必是连续的,我们先分段求出原函数,然后把它们连续地粘合在一起,就构成一个整体的原函数. 当x<0时, [*] 取C
1
=0,随之取C
2
=1,于是当x→0
—
时与x→0
+
时f(x)dx的极限同为1,这样就得到f(x)的一个原函数 [*] 因此 ∫f(x)dx=F(x)+C,其中C为任意常数. (Ⅱ)把被积函数改写成分段函数的形式,即 |x—y|ex=[*] 从而 F(y)=∫
—1
1
|x—y|e
x
dx=∫
—1
y
(y—x)e
x
dx+∫
y
1
(x—y)e
x
dx. 分别计算上式右端的两个积分即得 ∫
—1
y
(y一x)e
x
dx=∫
—1
y
(y一x)d(e
x
)=(y一x)e
x
|
x=—1
x=y
一∫
—1
y
e
x
d(y—x) =一(y+1)e
—1
+∫
—1
y
e
x
dx=e
y
一[*](y+2), ∫
y
1
(x—y)e
x
dx=∫
y
1
(x一y)d(e
x
)=(x—y)e
x
|
x=y
x=1
一∫
y
1
e
x
d(x一y) =e(1一y)一∫
y
1
e
x
dx=e(1一y)一e+e
y
=e
y
—ey. 把以上结果代入知 F(y)=2e
y
一[*](y+2)一ey.
解析
转载请注明原文地址:https://kaotiyun.com/show/lzX4777K
0
考研数学三
相关试题推荐
设函数f(x)在[0,a]上连续,在(0,a)内二阶可导,且f(0)=0,f"(x)<0,则在(0,a]上().
设f(x,y)=,其中D={(x,y)|a≤x+y≤b)(0<a<b).
把二重积分写成极坐标下的累次积分的形式(先r后θ),其中D由直线x+y=1,x=1,y=1围成.
求幂级数(|x|<1)的和函数s(x)及其极值.
设f(x)在区间[0,1]上可导,f(1)=.证明:存在ξ∈(0,1),使得2f(ξ)+ξf’(ξ)=0.
设f(x)在[a,b]上连续,证明:∫abf(x)dx=∫abf(a+b—x)dx.
设A为n阶矩阵且r(A)=n一1.证明:存在常数k,使得(A*)2=hA*.
讨论方程组的解的情况,在方程组有解时求出其解,其中a,b为常数.
设g(x)=,f(x)=∫0xg(t)dt.(1)证明:y=f(x)为奇函数,并求其曲线的水平渐近线;(2)求曲线y=f(x)与它所有水平渐近线及Oy轴围成图形的面积.
设,x∈(0,1],定义A(x)=∫0xf(t)dt,令试证:
随机试题
关于高动力循环状态的病理生理改变,下列哪项不正确
片剂处方不超过3日剂量的是
房地产置业投资的投资者从长期投资的角度出发希望获得的利益有()。
对于干硬性混凝土拌合物(坍落度小于10mm),其和易性指标采用()。
某大型机床厂机电安装工程项目,通过招标投标,最终由某设备安装工程公司获得了中标,并签订了总承包合同,该设备安装工程公司与某机床生产企业签订了采购合同。总承包合同中约定总承包企业承担工程设备的采购任务,总承包企业在订立采购合同后,派人进驻机床生产企业
同业拆借活动都是在金融机构之间进行,对参与者要求严格,因此,其拆借活动基本上都是()拆借。
地陪应在(),与旅行社各有关部门或人员联系落实,检查旅游团的交通、住宿、行李运输等事宜。
国内少数民族的汉语教学属于()。
[*]
Comparisonsweredrawnbetweenthedevelopmentoftelevisioninthe20thcenturyandthediffusionofprintinginthe15thand1
最新回复
(
0
)