首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设,正交矩阵Q使得QTAQ为对角矩阵,若Q的第1列为,求a,Q.
设,正交矩阵Q使得QTAQ为对角矩阵,若Q的第1列为,求a,Q.
admin
2021-01-19
37
问题
设
,正交矩阵Q使得Q
T
AQ为对角矩阵,若Q的第1列为
,求a,Q.
选项
答案
记[*].由 Aα
1
=λ
1
α
1
,即[*] 得a=-1,λ=2,因此[*] 由|λE-A|=[*] =(λ+4)(λ-2)(λ-5)=0. 得A的特征值为 λ
1
=2,λ
2
=-4,λ
3
=5,且对应于λ
1
=2的特征向量为 [*] 当λ
2
=-4时,(-4E-A)=[*] 由(-4E—A)x=0得对应于λ
2
=-4的特征向量为 α
2
=(-1,0,1)
T
. 当λ
3
=5时,(5E—A)=[*] 由(5E—A)x=0得对应于A。一5的特征向量为α
3
=(1,-1,1)
T
. 将α
1
,α
2
,α
3
单位化得:[*] 因A为实对称矩阵,α
1
,α
2
,α
3
为对应于不同特征值的特征向量,所以η
1
,η
2
,η
3
为单位正交向量组.令Q=(η
1
,η
2
,η
3
)=[*],则Q为正交矩阵,Q
T
AQ=[*]。
解析
本题考查实对称矩阵的正交对角化问题.由Q的列向量都是特征向量可得a的值以及对应的特征值,然后由A可求出其另外两个线性无关的特征向量,从而最终求出Q.
转载请注明原文地址:https://kaotiyun.com/show/m584777K
0
考研数学二
相关试题推荐
设f(x)在区间[0,1]上连续,在(0,1)内可导,且f(0)=f(1)=0,f(1/2)=1,试证:(Ⅰ)存在η∈(1/2,1),使f(η)=η;(Ⅱ)对任意实数λ,必存在ξ∈(0,η),使得f’(ξ)-λ[f(ξ)-ξ]=1.
A、 B、 C、 D、 B
设f(χ)=(1+χ+χ2)esinχ,则f〞(0)=_______.
设f(x)在(一∞,+∞)内有定义,且对于任意x与y均有f(x+y)=f(x)ey+f(y)ex,又设f’(0)存在且等于a(a≠0).试证明:对任意:f’(x)都存在,并求f(x).
已知曲线y=f(x)过点(0,),且其上任一点(x,y)处的切线斜率为xln(1+x2),则f(x)=_________。
以y=C1e-2χ+C2eχ+cosχ为通解的二阶常系数非齐次线性微分方程为_______.
设α,β,γ1,γ2,γ3都是4维列向量,且|A|=|α,γ1,γ2,γ3|=4,|B|=|β,γ1,γ2,γ3|=21,则|A+B|=________.
曲线y=3x++1的渐近线方程为________.
设φ(x)在x=a的某邻域内有定义,f(x)=|x-a|φ(x).则“φ(x)在x=a处连续”是“f(x)在x=a处可导”的()
随机试题
Iunderstandthetwofactorsthatcontributedtomydownfall:______(缺乏职业目标和缺乏自信).
在财产保险合同有效期内,保险标的的危险程度显著增加的,被保险人应当按照合同约定及时通知()。
根据《碾压式土石坝施工技术规范》DL/T5129--2001,筑坝材料施工试验项目包括()。
背景A公司参与远离所在地炼钢厂的机电安装工程总承包的投标,投标前做了如下工作:(1)分析了招标文件工程范围,本工程含机械设备安装、电气及自动化系统安装、钢结构及非标准件制作安装、工业给水排水施工、防腐及保温工程、筑炉工程。并分析了本公司
某公司上年年末支付每股股息2元,预期回报率为15%,未来3年中超常态增长率为20%,随后的增长率为8%,则股票的价值为()。
下列组织结构类型中,由专门从事某项工作的项目小组发展而来的是()。
下列关于股份支付的会计处理中,正确的有()。
甲公司为增值税一般纳税人,于2015年12月5日以一批商品换入乙公司的一项非专利技术,该交换具有商业实质。甲公司换出商品的账面价值为80万元,不含增值税的公允价值为100万元,增值税额为17万元;另收到乙公司补价10万元。甲公司换入非专利技术的原账面价值为
阅读“青藏地区”教学片断,回答问题。教师提出一个问题:“青藏地区”是什么样的?【活动1】在青藏地区示意图上填注以下地理事物(1)填注主要经线、纬线的度数。(2)填注喜马拉雅山脉、昆仑山脉、祁连山脉、横断山脉、塔里木河、金沙江、塔里木盆地。【活动2
现在公务员面临的工作情况复杂多变,需要我们具备理性的判断及处理能力,请你结合自身经历,列举一件你遇到过的危急事情,并说明你是如何处理的。
最新回复
(
0
)