首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
为了研究施肥和不施肥对某种农作物产量的影响,独立地选了十三个小区在其他条件相同的情况下进行对比试验,得收获量如下表: 设小区的农作物产量均服从正态分布且方差相等,求施肥与未施肥平均产量之差的置信度为0.95的置信区间(t0.975(11)=2.2
为了研究施肥和不施肥对某种农作物产量的影响,独立地选了十三个小区在其他条件相同的情况下进行对比试验,得收获量如下表: 设小区的农作物产量均服从正态分布且方差相等,求施肥与未施肥平均产量之差的置信度为0.95的置信区间(t0.975(11)=2.2
admin
2019-08-06
86
问题
为了研究施肥和不施肥对某种农作物产量的影响,独立地选了十三个小区在其他条件相同的情况下进行对比试验,得收获量如下表:
设小区的农作物产量均服从正态分布且方差相等,求施肥与未施肥平均产量之差的置信度为0.95的置信区间(t
0.975
(11)=2.201,下侧分位数).
选项
答案
设施肥与不施肥的农作物产量分别为总体X与Y,X~N(μ
1
,σ
2
),Y~N(μ
2
,σ
2
),题中n=6,[*]=33,S
χ
2
=[*]=3.2,m=7,[*]=30,S
y
2
[*]=4,1-α=0.95, 故μ
1
-μ
2
的 置信下限为 [*] 置信上限为 [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/m5J4777K
0
考研数学三
相关试题推荐
设f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b)=0,∫abf(x)dx=0.证明:存在ξ∈(a,b),使得f’’(ξ)=f(ξ);
设f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b)=0,∫abf(x)dx=0.证明:存在c∈(a,b),使得f(c)=0;
设总体X~N(0,σ2),X1,X2,…,Xn为总体X的简单随机样本,与S2分别为样本均值与样本方差,则().
设的一个特征值为λ1=,其对应的特征向量为判断A是否可对角化.若可对角化,求可逆矩阵P,使得P-1AP为对角矩阵.若不可对角化,说明理由.
设的一个特征值为λ1=,其对应的特征向量为求常数a,b,c;
设随机变量X服从参数为λ的指数分布,G(x)是区间[0,1]上均匀分布的分布函数,证明随机变量Y=G(x)的概率分布不是区间[0,1]上的均匀分布.
设二维随机变量(X,Y)的联合密度函数为试求:协方差Cov(X,Y),D(5X一3Y).
设二维随机变量(X,Y)的联合密度函数为试求:方差DX,DY;
设f(x)在(一∞,+∞)连续,在点x=0处可导.且f(0)=0.令试求A的值,使F(x)在(一∞,+∞)上连续;
设X1,X2,…,Xn是来自总体X的简单随机样本,其均值和方差分别为与S2,且X~B(1,p),0<p<1.试求:的概率分布;
随机试题
招募广告在设计上要注意______,这四个字母分别表示注意、兴趣、欲望、行动。
Notonly______verywell,butalso______well.
男性30岁,节律性间断上腹隐痛3年,加重2天,15h前开始黑便3次,量约1000克左右,BP70/50mmHg,P120次/分,Hb90g/L。首选的治疗是
目前临床上检测抗核抗体主要采用
下列哪项不是疳证的主要临床表现
()是投资于建设项目的组织和个人。
在一座汽车总装厂房中,喷漆工段占总装厂房的面积比例约9%,喷漆工段采用防火分隔和自动灭火设施保护,厂房的生产火灾危险性类别应按()类划分。
阅读以下文章,回答问题:地震发生时,最基本的现象是地面的连续振动,主要是明显的晃动。极震区的人在感到大的晃动之前,有时首先感到上下跳动。这是因为地震波从地内向地面传来,纵波首先到达的缘故。横波接着产生大振幅的水平方向的晃动,是造成地震灾害的主要原因。
______leavestheofficelastshouldturnofftheairconditioner.
A、Tofurtherherstudy.B、Tofindajob.C、Toquitherjob.D、Togobacktoschool.B
最新回复
(
0
)