首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
为了研究施肥和不施肥对某种农作物产量的影响,独立地选了十三个小区在其他条件相同的情况下进行对比试验,得收获量如下表: 设小区的农作物产量均服从正态分布且方差相等,求施肥与未施肥平均产量之差的置信度为0.95的置信区间(t0.975(11)=2.2
为了研究施肥和不施肥对某种农作物产量的影响,独立地选了十三个小区在其他条件相同的情况下进行对比试验,得收获量如下表: 设小区的农作物产量均服从正态分布且方差相等,求施肥与未施肥平均产量之差的置信度为0.95的置信区间(t0.975(11)=2.2
admin
2019-08-06
82
问题
为了研究施肥和不施肥对某种农作物产量的影响,独立地选了十三个小区在其他条件相同的情况下进行对比试验,得收获量如下表:
设小区的农作物产量均服从正态分布且方差相等,求施肥与未施肥平均产量之差的置信度为0.95的置信区间(t
0.975
(11)=2.201,下侧分位数).
选项
答案
设施肥与不施肥的农作物产量分别为总体X与Y,X~N(μ
1
,σ
2
),Y~N(μ
2
,σ
2
),题中n=6,[*]=33,S
χ
2
=[*]=3.2,m=7,[*]=30,S
y
2
[*]=4,1-α=0.95, 故μ
1
-μ
2
的 置信下限为 [*] 置信上限为 [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/m5J4777K
0
考研数学三
相关试题推荐
设f(x)在[0,1]上二阶可导,且f(0)=f’(0)=f(1)=f’(1)=0.证明:方程f’’(x)-f(x)=0在(0,1)内有根.
设函数f(x)(x≥0)可微,且f(x)>0.将曲线y=f(x),x=1,x=a(a>>1)及x轴所围成平面图形绕x轴旋转一周得旋转体体积为[a2f(a)-f(1)].若求:f(x)的极值.
设f(x)在x=x0的邻域内连续,在x=x0的去心邻域内可导,且证明:f’(x0)=M.
设二维随机变量(X,Y)服从二维正态分布,且X~N(1,32),Y~N(0,42),且X,Y的相关系数为求ρXZ;
设总体X~N(0,σ2),X1,X2,…,Xn为总体X的简单随机样本,与S2分别为样本均值与样本方差,则().
设的一个特征值为λ1=,其对应的特征向量为求常数a,b,c;
设α1,α2,…,αn为n个n维向量,证明:α1,α2,…,αn线性无关的充分必要条件是任一n维向量总可由α1,α2,…,αn线性表示.
设A=E-ααT,其中α为n维非零列向量.证明:当α是单位向量时A为不可逆矩阵.
设随机变量X满足|X|≤1,且,在{-1<X<1}发生的情况下,X在(-1,1)内任一子区间上的条件概率与该子区间长度成正比.求P(X<0)
随机试题
面神经分布的范围有
对处于创业期和拓展期的新兴公司进行资金融通的业务属于投资银行的()
关于君子人格理想的论说,主要集中在先秦儒家典籍之中。这些儒家典籍成为经典之后,历代学人不仅反复习诵,而且不断进行注疏阐释,在泱泱典籍中,形成了“经学”。先秦儒家关于君子的论说也就不断被传承和弘扬。由于儒家思想是中国历代主流意识形态的核心内容,所以经学几乎贯
恶性葡萄胎与绒毛膜癌的主要不同为
护士为卧床患者洗发时,以下操作不妥的是
根据《文物保护法》的规定,市级文物保护单位由()核定公布。
文明礼貌的核心是()。
物流中心的信息化建设一般以信息技术为基础,在一定的深度和广度上利用计算机技术、网络技术和数据库技术,控制和集成化管理企业物流运营活动中的所有信息,实现企业内外部信息的共享和有效利用,以提高企业的经济效益和市场竞争能力。()
对关系S和关系R进行集合运算,结果中既包含关系S中的所有元组也包含关系R中的所有元组,这样的集合运算称为()。
Genetics,thestudyofgenes,isgainingincreasingimportance.Genescan【B1】______manythings,fromwhomwelookliketowhat
最新回复
(
0
)