首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知3阶矩阵A的第一行为(a,b,c),a,b,c不全为0,矩阵B=,并且AB=0,求齐次线性方程组AX=0的通解.
已知3阶矩阵A的第一行为(a,b,c),a,b,c不全为0,矩阵B=,并且AB=0,求齐次线性方程组AX=0的通解.
admin
2018-11-20
53
问题
已知3阶矩阵A的第一行为(a,b,c),a,b,c不全为0,矩阵B=
,并且AB=0,求齐次线性方程组AX=0的通解.
选项
答案
由于AB=0,r(A)+r(B)≤3,并且B的3个列向量都是AX=0的解. (1)若k≠9,则r(B)=2,r(A)=1,AX=0的基础解系应该包含两个解.(1,2,3)
T
和(3,6,k)
T
。都是解,并且它们线性无关,从而构成基础解系,通解为: c
1
(1,2,3)
T
+c
2
(3,6,k)
T
,其中c
1
,c
2
任意. (2)如果k=9,则r(B)=1,r(A)=1或2. ①r(A)=2,则AX=0的基础解系应该包含一个解,(1,2,3)
T
构成基础解系,通解为: c(1,2,3)
T
,其中c任意. ②r(A)=1,则AX=0的基础解系包含两个解,而此时B的3个列向量两两相关,不能用其中的两个构成基础解系. 由r(A)=1,A的行向量组的秩为1,第一个行向量(a,b,c)(≠0!)构成最大无关组,因此第二,三个行向量都是(a,b,c)的倍数,从而AX=0和方程ax
1
+bx
2
+cx
3
=0同解.由于(1,2,3)
T
是解,有a+2b+3c=0,则a,b不都为0(否则a,b,c都为0),于是(b,一a,0)
T
也是ax
1
+bx
2
+cx
3
=0的一个非零解,它和(1,2,3)
T
线性无关,一起构成基础解系,通解为: c
1
(1,2,3)
T
+c
2
(b,一a,0)
T
,其中c
1
,c
2
任意.
解析
转载请注明原文地址:https://kaotiyun.com/show/m5W4777K
0
考研数学三
相关试题推荐
设y=y(x)是一向上凸的连续曲线,其上任意一点(x,y)处的曲率为,又此曲线上的点(0,1)处的切线方程为y=x+1,求该曲线方程,并求函数y(x)的极值.
设f(x)二阶连续可导,f(0)=0,f’(0)=1,且[xy(x+y)一f(x)y]dx+[f’(x)+x2y]dy=0为全微分方程,求f(x)及该全微分方程的通解.
计算D=
设二次型f(x1,x2,x3)=XTAX,A的主对角线上元素之和为3,又AB+B=0,其中求矩阵A.
设f(x)在[0,1]上连续,在(0,1)内可导,f(0)=0,f()一1,f(1)=0.证明:对任意的k∈(一∞,+∞),存在ξ∈(0,η),使得f’(ξ)一k[f(ξ)一ξ]=1.
设α是n维单位列向量,A=E一ααT.证明:r(A)<n.
设A是一个五阶矩阵,A*是A的伴随矩阵,若η1,η2是齐次线性方程组Ax=0的两个线性无关的解,则r(A*)=________。
在某国,每年有比例为p的农村居民移居城镇,有比例为q的城镇居民移居农村。假设该国总人口数不变,且上述人口迁移的规律也不变。把n年后农村人口和城镇人口占总人口的比例依次记为xn和yn(xn+yn=1)。(Ⅰ)求关系式中的矩阵A;(Ⅱ)设目前农村人口与城镇
设D为不等式0≤x≤3,0≤y≤1所确定的区域,则min(x,y)dxdy=________。
设总体X服从韦布尔分布,密度函数为其中α>0为已知,θ>0是未知参数,试根据来自X的简单随机样本X1,X2,…,Xn,求θ的最大似然估计量.
随机试题
Idon’tthinkit’snecessaryforustodiscussthisquestionanyfurther.()
计算机网络中为了防止黑客攻击服务器所采用的关键技术是_______技术。
胆囊无痛性肿大伴黄疸,见于()
为一位急性肺栓塞的患者进行身体评估,可获得的体征有
肘横纹(平肘尖)至腕掌(背)侧横纹的骨度分寸是
香港特别行政区的下列哪一项职务可由特区非永久性居民担任?(2008年试卷一第16题)
工业安装工程的特征是有()。
颜色为黄色的地面标志包括()。
关于转让旧房及建筑物土地增值税扣除项目的税务处理,下列说法正确的是()。
教育现代化的核心是()。
最新回复
(
0
)