首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[0,1]上连续且满足f(0)=1,f’(x)-f(x)=a(x-1).y=f(x),x=0,x=1,y=0围成的平面区域绕x轴旋转一周所得的旋转体体积最小,求f(x).
设f(x)在[0,1]上连续且满足f(0)=1,f’(x)-f(x)=a(x-1).y=f(x),x=0,x=1,y=0围成的平面区域绕x轴旋转一周所得的旋转体体积最小,求f(x).
admin
2021-10-18
83
问题
设f(x)在[0,1]上连续且满足f(0)=1,f’(x)-f(x)=a(x-1).y=f(x),x=0,x=1,y=0围成的平面区域绕x轴旋转一周所得的旋转体体积最小,求f(x).
选项
答案
由f’(x)-f(x)=a(x-1)得f(x)=[a∫(x-1)e
∫-1dx
dx+C]e
-∫-dx
=Ce
x
-ax,由f(0)=1得C=1,故f(x)=e
x
-ax.V’(a)=π∫
0
1
f
2
(x)dx=π[(e
2
-1)/2-2a+a
2
/3],由V’(a)=π(-2+2a/3)=0得a=3,因为V"(a)=2π/3>0,所以当a=3时,旋转体的体积最小,故f(x)=e
x
-3x.
解析
转载请注明原文地址:https://kaotiyun.com/show/mCy4777K
0
考研数学二
相关试题推荐
微分方程y"+2y’+y=shx的一个特解应具有形式(其中a,b为常数)()
设有方程组AX=0与BX=0,其中A,B都是m×n阶矩阵,下列四个命题:(1)若AX=0的解都是BX=0的解,则r(A)≥r(B)(2)若r(A)≥r(B),则AX=0的解都是BX=0的解(3)若AX=0与BX=0同解,则r(
设f(x)为连续函数,证明:
设有方程组AX=0与BX=0,其中A,B都是m×n阶矩阵,下列四个命题:(1)若AX=0的解都是BX:0的解,则r(A)≥r(B)(2)若r(A)≥r(B),则AX=0的解都是BX=0的解(3)若AX=0与BX=0同解,则r(A)=r(B
计算,其中D是由圆心在点(a,a)、半径为a且与坐标轴相切的圆周的较短一段弧和坐标轴所围成的区域.
已知y1(x)和y2(x)是方程y’+p(x)y=0的两个不同的特解,则方程的通解为()
设a1,a2,a3,a4为4维列向量,满足a2,a3,a4线性无关,且a1+a3=2a2.令A=(a1,a2,a3,a4),β=a1+a2+a3+a4.求线性方程组Ax=β的通解.
设D是第一象限中由曲线2xy=1,4xy=1与直线y=x,围成的平面区域,函数f(x,y)在D上连续,则=().
求微分方程yy〞=y′2满足初始条件y(0)=y′(0)=1的特解.
设y=eχ为微分方程χy′+P(χ)y=χ的解,求此微分方程满足初始条件y(ln2)=0的特解.
随机试题
Nowadays,withwomenplayinganever-increasingroleinallkindsofcareersandprofessions,itisdifficulttounderstandthat
患儿自汗,汗出遍身,畏寒怕风,不发热,或伴有低热,精神疲倦,胃纳不振,舌质淡红,苔薄白,脉缓。治疗的首选方剂是
患者,女性,25岁。淋雨后打喷嚏、咳嗽、鼻塞、流涕,开始为清水样,3天后变稠,伴有咽痛,轻度畏寒、头痛。该患者最可能的诊断是
针对工程咨询单位的风险管理策略主要有()。
信息披露文件应当采用( )。
下列关于四大天王的概述正确的是()
蕴涵“身教重于言教”思想的学习理论是()。
《大同书》的作者是康有为,《少年中国说》的作者是梁启超。()
“茶啊冲”源自古老的肃慎语发音,是长春最早的古称谓。其汉语释义为()。①“苍天”②“狩猎场”③“天佑之城”④神所赐福的土地”
依据《中华人民共和国审计法》以下哪个单位不需要审计机关有计划地定期审计?()
最新回复
(
0
)