首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(2005年)已知函数f(χ)在[0,1]上连续,在(0,1)内可导,且f(0)=0,f(1)=1.证明: (Ⅰ)存在ξ∈(0,1),使得f(ξ)=1-ξ; (Ⅱ)存在两个不同的点η,ζ∈(0,1),使得f′(η)f′(ζ)=1.
(2005年)已知函数f(χ)在[0,1]上连续,在(0,1)内可导,且f(0)=0,f(1)=1.证明: (Ⅰ)存在ξ∈(0,1),使得f(ξ)=1-ξ; (Ⅱ)存在两个不同的点η,ζ∈(0,1),使得f′(η)f′(ζ)=1.
admin
2019-08-01
38
问题
(2005年)已知函数f(χ)在[0,1]上连续,在(0,1)内可导,且f(0)=0,f(1)=1.证明:
(Ⅰ)存在ξ∈(0,1),使得f(ξ)=1-ξ;
(Ⅱ)存在两个不同的点η,ζ∈(0,1),使得f′(η)f′(ζ)=1.
选项
答案
(Ⅰ)令g(χ)=f(χ)+χ-1,则g(χ)在[0,1]上连续,且 g(0)=-1<0,g(1)=1>0 所以存在ξ∈(0,1),使得 g(ξ)=f(ξ)+ξ-1=0 即f(ξ)=1-ξ. (Ⅱ)根据拉格朗日中值定理,存在η∈(0,ξ),ζ∈(ξ,1),使得 [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/mJN4777K
0
考研数学二
相关试题推荐
设f(x)在x0的邻域内四阶可导,且|f(x)(4)|≤M(M>0).证明:对此邻域内任一异于x0的点x,有|f’’(x0)-(x-x0)2,其中x’为x关于x0的对称点.
已知二元函数f(x,y)满足且f(x,y)=g(u,v),若=u2+v2,求a,b.
曲线的渐近线的条数为().
设φ1(x),φ2(x),φ3(x)为二阶非齐次线性方程y’’+a1(x)y’+a2(x)y=f(x)的三个线性无关解,则该方程的通解为().
设f(x)在[a,b]上二阶可导,且f’(a)=f’(b)=0.证明:存在ξ∈(a,b).使得|f’’(ξ)|≥|f(b)-f(a)|.
设f(x)在[0,1]连续,且f(0)=f(1),证明:在[0,1]上至少存在一点ξ,使得
设A为实矩阵,证明r(ATA)=r(A).
已知A=可对角化,求可逆矩阵P及对角矩阵Λ,使P-1AP=Λ.
已知A=是正定矩阵,证明△=>0.
(Ⅰ)设f(x),g(x)在点x=x0处可导且f(x0)=g(x0)=0,f′(x0)g′(x0)<0,求证:x=x0是f(x)g(x)的极大值点.(Ⅱ)求函数F(x)=(x∈(—∞,+∞))的值域区间
随机试题
下列关于胸锁乳突肌的描述,正确的是()
张某利用含有瘦肉精的猪饲料大量饲养生猪并出售,其行为构成生产、销售不符合安全标准的食品罪。【】
是下颌全口义齿舌侧基托接触部位,该区后部牙托应有足够的伸展上颌后部口腔前庭与口腔本部的交界处为
运动性失语病人与闭锁综合征病人都是不能说话,能理解别人说的话,他们之间最主要的区别在于
DTA鉴别药物的依据有
A.应当具有大学专科以上学历或者中级以上专业技术职称B.大学本科以上学历、执业药师资格和3年以上药品经营质量管理工作经历C.应当具有执业药师资格和3年以上药品经营质量管理工作经历D.应当具有药学中专或者医学、生物、化学等相关专业大学专科以上学历或者具
甲公司与乙公司订立了一份委托技术开发合同,甲公司委托乙公司研究开发一项新技术,双方同时约定,如果在2001年6月份以前,乙公司尚未就该技术开发取得实质性成果,则甲公司有权解除合同,双方未约定解除权的行使期限。至2001年6月时,乙公司果然没有取得任何实质性
个体生命在子宫内的发育,可以划分为三个阶段,按时间顺序,应该是
阅读以下说明,回答问题1~问题6,将答案填入对应的答案栏内。【说明】某公司在国际网互联中心申请了一个C类的IP地址210.45.12.0/24,域名为abc.com.cn,其DNS服务器的地址是210.45.12.103。该公司没有划分
What’sthepurposeofthecarbombing?
最新回复
(
0
)