首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
试用配方法化二次型 f(x1,x2,x3)=2x12+3x22+x32+4x1x2—4x1x3—8x2x3 为标准形和规范形,写出相应的可逆线性变换矩阵,并求二次型的秩及正、负惯性指数。
试用配方法化二次型 f(x1,x2,x3)=2x12+3x22+x32+4x1x2—4x1x3—8x2x3 为标准形和规范形,写出相应的可逆线性变换矩阵,并求二次型的秩及正、负惯性指数。
admin
2019-08-12
31
问题
试用配方法化二次型
f(x
1
,x
2
,x
3
)=2x
1
2
+3x
2
2
+x
3
2
+4x
1
x
2
—4x
1
x
3
—8x
2
x
3
为标准形和规范形,写出相应的可逆线性变换矩阵,并求二次型的秩及正、负惯性指数。
选项
答案
由于f中含有x
1
的平方项,故先把含x
1
的项进行配方,然后再把含x
2
的项进行配方,依次配方即可。即 f(x
1
,x
2
,x
3
)=2(x
1
2
+2x
1
x
2
—2x
1
x
3
)+3x
2
2
+x
3
2
—8x
2
x
3
=2(x
1
+x
2
—x
3
)
2
+x
2
2
—4x
2
x
3
—x
3
2
=2(x
1
+x
2
—x
3
)
2
+(x
2
—2x
3
)
2
—5x
3
2
。 令 [*] 则把二次型f化成了标准形 f(x
1
,x
2
,x
3
)=2y
1
2
+y
2
2
—5y
3
2
。 所用的可逆线性变换矩阵为C=[*],可逆变换为x=Cy。 由以上结论可知,二次型f的规范形为f=z
1
2
+z
2
2
—z
3
2
,二次型的秩R(f)=3,正惯性指数为2, 负惯性指数为1。
解析
转载请注明原文地址:https://kaotiyun.com/show/SvN4777K
0
考研数学二
相关试题推荐
设f(x)在[a,b]上连续,f(x)≥0且∫abf(x)dx=0,求证:在[a,b]上f(x)≡0.
设f(x)在[a,b]上二阶可导,且f’(a)=f’(b)=0,证明:ξ∈(a,b),使|f"(ξ)|≥|f(b)一f(a)|。
设f(x)在[-a,a]上连续,在(-a,a)内可导,且f(-a)=f(a)(a>0),证明:存在ξ∈(-a,a),使得f’(ξ)=2ξf(ξ).
利用变换x=arctant将方程化为y关于t的方程,并求原方程的通解.
设u=u(x,y,z)连续可偏导,令若,证明:u仅为θ与φ的函数.
已知3阶矩阵A的第一行为(a,b,c),a,b,c不全为0,矩阵B=,并且AB=0,求齐次线性方程组AX=0的通解.
设(1)用变限积分表示满足上述初值条件的特解y(x);(2)讨论是否存在,若存在,给出条件,若不存在,说明理由.
设f(x)的二阶导数在x=0处连续,且试求f(0),f’(0),f"(0)以及极限
设α1,α2,α3,α4是四维非零列向量组,A=(α1,α2,α3,α4),A*为A的伴随矩阵。已知方程组Ax=0的基础解系为k(1,0,2,0)T,则A*x=0的基础解系为()
设函数f(x)在x=0处连续,下列命题错误的是()
随机试题
在成本管理工作中,基础环节是()。
Austin一Flint杂音和二尖瓣狭窄舒张期杂音的主要辨别点在于
A.0.03%维A酸乳膏剂B.10%过氧苯甲酰凝胶C.0.1%阿达帕林凝胶D.红霉素-过氧苯甲酰凝胶E.维胺酯胶囊哪个药物可用于轻中度寻常性痤疮者()
工程项目类型按项目的运音性质,可分为()。
证券公司可以向其股东、关联人融资融券。()
建立社会主义市场经济体制主要是使市场()。
下列有关三次科技革命的说法正确的是()。
下列措施中,不属于王安石变法的是:
数据库系统的三级组织结构中,DBA视图是【】。
TheleakageattheFukushimaNuclearPowerStationhasshockedtheworld.Manypeoplehaveprotestedthatnuclearprogramsshoul
最新回复
(
0
)