首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
试用配方法化二次型 f(x1,x2,x3)=2x12+3x22+x32+4x1x2—4x1x3—8x2x3 为标准形和规范形,写出相应的可逆线性变换矩阵,并求二次型的秩及正、负惯性指数。
试用配方法化二次型 f(x1,x2,x3)=2x12+3x22+x32+4x1x2—4x1x3—8x2x3 为标准形和规范形,写出相应的可逆线性变换矩阵,并求二次型的秩及正、负惯性指数。
admin
2019-08-12
34
问题
试用配方法化二次型
f(x
1
,x
2
,x
3
)=2x
1
2
+3x
2
2
+x
3
2
+4x
1
x
2
—4x
1
x
3
—8x
2
x
3
为标准形和规范形,写出相应的可逆线性变换矩阵,并求二次型的秩及正、负惯性指数。
选项
答案
由于f中含有x
1
的平方项,故先把含x
1
的项进行配方,然后再把含x
2
的项进行配方,依次配方即可。即 f(x
1
,x
2
,x
3
)=2(x
1
2
+2x
1
x
2
—2x
1
x
3
)+3x
2
2
+x
3
2
—8x
2
x
3
=2(x
1
+x
2
—x
3
)
2
+x
2
2
—4x
2
x
3
—x
3
2
=2(x
1
+x
2
—x
3
)
2
+(x
2
—2x
3
)
2
—5x
3
2
。 令 [*] 则把二次型f化成了标准形 f(x
1
,x
2
,x
3
)=2y
1
2
+y
2
2
—5y
3
2
。 所用的可逆线性变换矩阵为C=[*],可逆变换为x=Cy。 由以上结论可知,二次型f的规范形为f=z
1
2
+z
2
2
—z
3
2
,二次型的秩R(f)=3,正惯性指数为2, 负惯性指数为1。
解析
转载请注明原文地址:https://kaotiyun.com/show/SvN4777K
0
考研数学二
相关试题推荐
[*]
已知(2,1,1,1)T,(2,1,a,a)T,(3,2,1,a)T,(4,3,2,1)T线性相关,并且a≠1,求a.
设(1)用变限积分表示满足上述初值条件的特解y(x);(2)讨论是否存在,若存在,给出条件,若不存在,说明理由.
用列举法表示下列集合:(1)方程x2-7x+12=0的根的集合(2)抛物线y=x2与直线x—y=0交点的集合(3)集合{x||x-1|≤5的整数}
A=,求作一个3阶可逆矩阵P,使得PTAP是对角矩阵.
设A为3阶矩阵,3维列向量α,Aα,A2α线性无关,且满足3Aα-2A2α-A3α=0,令矩阵P=[αAαA2α],(1)求矩阵B,使AP=PB;(2)证明A相似于对角矩阵.
一长为l(米)、线密度为ρ(千克/米)的链条,两端各系一个质量为m(千克)的物体A与B.开始时,仅A下垂,其余部分平置于桌面上,假设物体、链条与桌面的摩擦均略而不计.问从开始算起经过多少时间,链条全部从桌面上滑下.
二次型f(x1,x2,x3)=5x12+5x22+cx32一2x1x2+6x1x3—6x2x3的秩为2。求参数c及此二次型对应矩阵的特征值。
设则()
设α1,α2,α3,α4是四维非零列向量组,A=(α1,α2,α3,α4),A*为A的伴随矩阵。已知方程组Ax=0的基础解系为k(1,0,2,0)T,则A*x=0的基础解系为()
随机试题
中医学称为“刚脏”的是
HIV感染人体后主要导致的系统损害是
A.毒扁豆碱B.阿托品C.山莨菪碱D.新斯的明E.东莨菪碱治疗青光眼可选用()
其立体构型为苏阿糖型的手性药物是
在比较短的水平距离内,提升到较高的位置,通常采用( )。
单位内部人员查阅会计档案时应由()批准后,办理查阅手续。
Thewaypeopleworkhaschanged.Theincreasinguseoftechnologypresentsnewandcontinualchallengestosmallandlargebusin
当x→0时,axb与tanx一sinx为等价无穷小,则a=____________,b=____________。
美国心理学家布鲁纳认为,学习的实质性在于()。
What’sTom’stelephonenumber?
最新回复
(
0
)