首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是3阶实对称矩阵,已知A的每行元素之和为3,且有二重特征值λ1=λ2=1.求A的全部特征值、特征向量,并求An.
设A是3阶实对称矩阵,已知A的每行元素之和为3,且有二重特征值λ1=λ2=1.求A的全部特征值、特征向量,并求An.
admin
2020-03-05
20
问题
设A是3阶实对称矩阵,已知A的每行元素之和为3,且有二重特征值λ
1
=λ
2
=1.求A的全部特征值、特征向量,并求A
n
.
选项
答案
方法一 A是3阶矩阵,每行元素之和为3,即有 [*] 故知A有特征值λ
3
=3,对应特征向量为ξ
3
=[1,1,1]
T
. 又A是实对称阵,不同特征值对应的特征向量相互正交,故设λ
1
=λ
2
=1的特征向量为ξ=[x
1
,x
2
,x
3
]
T
,应有 ξ
3
T
ξ=x
1
+x
2
+x
3
=0, 解得λ
1
=λ
2
=1的线性无关特征向量为 ξ
1
=[-1,1,0]
T
,ξ
2
=[-1,0,1]
T
. 取P=[ξ
1
,ξ
2
,ξ
3
]= [*] 故 A=PΛP
-1
,A
n
=PΛP
-1
…PΛP
-1
=PΛ
n
P
-1
. 其中P可如下求得: [*] 方法二 由方法一,得 Aξ
3
=λ
3
ξ
3
,其中λ
3
=3,ξ
3
= [*] 设λ
1
=λ
2
=1对应的特征向量为ξ=[x
1
,x
2
,x
3
]
T
,则应有 ξ
3
T
ξ=x
1
+x
2
+x
3
=0. 取ξ
1
=[1,-1,0]
T
,再取ξ
2
与ξ
1
正交,设ξ
2
=[1,1,x]
T
,代入上式得ξ
2
=[1,1,-2]
T
,将ξ
1
,ξ
2
,ξ
3
单位化,并取正交阵 [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/mMS4777K
0
考研数学一
相关试题推荐
设n阶矩阵A与对角矩阵相似,则().
设f(x)=x∈(0,1),则f[g(x)]在(0,1)内()
设D为圆域x2+y2≤x,则I=dσ=_____________.
以下4个平面方程:①7x+5y+2z+10=0,②-7y-5y+2z-10=0,③7x-y+14z+26=0,④x-7y+14z-26=0,是平面x+2y-2z+6=0和平面4x-y+8z-8=0的交角的平分面方程的是()
以下4个结论:①教室中有r个学生,则他们的生日都不相同的概率是②教室中有4个学生,则至少有两个人的生日在同一个月的概率是③将C,C,E,E,I,N,S共7个字母随机地排成一行,恰好排成英文单词SCIENCE的概率是④袋中有编号为1到10的10个球,
设随机变量X和Y的联合分布函数为则随机变量X的分布函数P(x)为_______.
设A是三阶实对称矩阵,若对任意的三维列向量X,有XTAX=0,则().
设f(x)在[a,b]上二阶可导,且f’(a)=f’(b)=0.证明:存在ξ∈(a,b),使得|f"(ξ)|≥|f(b)一f(a)|.
设un>0(n=1,2,…),Sn=u1+u2+…+un.证明:收敛.
讨论反常积分∫02的敛散性,若收敛计算其值.
随机试题
患儿女性,1岁2个月,主因“间断发热皮疹伴反复口腔溃疡5个月余,双膝关节饱满10天”。查体:心率128次/min,呼吸25次/min,神志清楚,精神反应好,前囟大小0.2cm×0.2cm,张力不高。呼吸平稳。双肘关节伸面、足跟可见散在淡红色斑丘疹。双眼睑无
心理评估的常用方法,不包括
A.氨溴索B.乙酰半胱氨酸C.可待因D.苯丙哌林E.右美沙芬具有旋光性,药用其右旋体的是
账套备份文件只能经过()功能处理后,才能打开。
下列利息支出,可以在企业所得税税前全额扣除的是()。
朱熹在《朱子全书.论学》中写道:“宽着期限,紧着课程;小立课程,大作功夫”。这里的“课程”指的是()。
下列古都中哪个被称为是“六朝古都”?()
WhatisEinstein’sgreatestcontributiontohumanbeings?
Moreparentsarenowchoosingtohomeschoolinsteadofsendingtheirchildrentopublicorprivateschools.Butwhatishomescho
A、Bothglobalwarmingandbelow-averagerainfall.B、Bothbelow-averagerainfallandnaturalclimatevariability.C、Globalwarmin
最新回复
(
0
)