首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(t)在[0,π]上连续,在(0,π)内可导,且∫0πf(x)cosxdx=∫0πf(x)sinxdx=0.证明:存在ξ∈(0,π),使得f’(ξ)=0.
设f(t)在[0,π]上连续,在(0,π)内可导,且∫0πf(x)cosxdx=∫0πf(x)sinxdx=0.证明:存在ξ∈(0,π),使得f’(ξ)=0.
admin
2019-02-26
67
问题
设f(t)在[0,π]上连续,在(0,π)内可导,且∫
0
π
f(x)cosxdx=∫
0
π
f(x)sinxdx=0.证明:存在ξ∈(0,π),使得f
’
(ξ)=0.
选项
答案
令F(x)=∫
0
x
f(t)sintdt,因为F(0)=F(π)=0,所以存在x
1
∈(0,π),使得F
’
(x
1
)=0,即f(x
1
)sinx
1
=0,又因为sinx
1
≠0,所以f(x
1
)=0. 设x
1
是f(x)在(0,π)内唯一的零点,则当x∈(0,π)且x≠x
1
时,有sin(x—x
1
)f(x)恒正或恒负,于是∫
0
π
sin(x—x
1
)f(x)dx≠0. 而∫
0
π
sin(x—x
1
)f(x)dx=cosx
1
∫
0
π
f(x)sinxdx—sinx
1
∫
0
π
f(x)cosxdx=0,矛盾,所以f(x)在(0,π)内至少有两个零点,不妨设f(x
1
)=f(x
2
)=0,x
1
,x
2
∈(0,π)且x
1
<x
2
,由罗尔中值定理,存在ξ∈(x
1
,x
2
)[*](0,π),使得f
’
(ξ)=0.
解析
转载请注明原文地址:https://kaotiyun.com/show/Nh04777K
0
考研数学一
相关试题推荐
已知向量组α1=(1,2,3,4),α2=(2,3,4,5),α3=(3,4,5,6),α4=(4,5,6,t),且r(α1,α2,α3,α4)=2,则t=________.
二次型f(x1,x2,x3)=(x1—2x2)2+4x2x3的矩阵为_________.
设A为3阶正交矩阵,它的第一行第一列位置的元素是1,又设β=(1,0,0)T,则方程组AX=β的解为_______.
设y=e-x-x3,则其反函数的导数x’(y)=_______.
设随机变量X服从均值为10,均方差为0.02的正态分布,已知,Φ(2.5)=0.9938,则X落在区间(9.95,10.05)内的概率为_______.
有甲、乙、丙三个盒子,第一个盒子里有4个红球1个白球,第二个盒子里有3个红球2个白球,第三个盒子里有2个红球3个白球,先任取一个盒子,再从中先后取出3个球,以X表示红球数.(I)求X的分布律;(Ⅱ)求所取到的红球不少于2个的概率.
曲线的渐近线的条数为().
设f(x)∈c[a,b]且f(x)为单调增函数,若f(a)<0,∫abf(x)dx>0,证明:(I)存在ξ∈(a,b),使得∫aξf(x)dx=0;(Ⅱ)存在η∈(a,b),使得∫aηf(x)dx=f(η).
设u(x,y)在平面有界闭区域D上具有二阶连续偏导数,且则u(x,y)的()
(2017年)若曲线积分在区域D={(x,y)|x2+y2<1}内与路径无关,则a=___________。
随机试题
如何采用热处理方法减小或消除焊件的焊接残余应力?
ElectricityThemodernageisanageofelectricity.Peoplearesousedtoelectriclights,radio,televisions,andtelephon
《秋水》选自()
A.多适用于慢性、虚弱性疾病B.在肛道融化或溶解释放药物C.用于插入疮口或瘘管内,化脓拔毒D.用于祛风通络E.用于病情较重或病情不稳定的患者
适于进餐时服用,可减少脂肪吸收率的药品是()。
中性点非直接接地系统中35/10kV变电站,选择变压器中性点的阀型避雷器的参数。工频放电电压下限(内过电压水平2.67Uxg)大于()。
下列关于“创投国十条”的说法正确的是()。
阅读下面的文言文,回答问题。桃花源记陶渊明晋太元中,武陵人捕鱼为业。缘溪行,忘路之远近。忽逢桃花林,夹岸数百步,中无杂树,芳草鲜美,落英缤纷,渔人甚异之。复前行,欲穷其林。林尽水源,便得一山,山有小口,仿佛若有光。便
公安机关对其原吸毒行为不予处罚的人员是()。
调查显示,59.4%的公众感觉当前社会“逆淘汰”现象普遍,其中18.8%的人觉得“非常多”。所谓“逆淘汰”,简言之,即指坏的淘汰好的,劣质的淘汰优质的,平庸的淘汰杰出的等现象。根据上述定义,下列属于逆淘汰现象的是:
最新回复
(
0
)