首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
齐次线性方程组AX=0的系数矩阵A4×5=(α1,α2,α3,α4,α5)经初等行变换化为阶梯形矩阵则( )
齐次线性方程组AX=0的系数矩阵A4×5=(α1,α2,α3,α4,α5)经初等行变换化为阶梯形矩阵则( )
admin
2019-03-14
43
问题
齐次线性方程组AX=0的系数矩阵A
4×5
=(α
1
,α
2
,α
3
,α
4
,α
5
)经初等行变换化为阶梯形矩阵则( )
选项
A、α
1
不能由α
2
,α
3
,α
4
线性表示。
B、α
2
不能由α
3
,α
4
,α
5
线性表示。
C、α
3
不能由α
1
,α
2
,α
4
线性表示。
D、α
4
不能由α
1
,α
2
,α
3
线性表示。
答案
D
解析
对于选项A,考虑非齐次线性方程组x
2
α
2
+x
3
α
3
+x
4
α
4
=α
1
。由已知条件可知r(α
2
,α
3
,α
4
)=r(α
2
,α
3
,α
4
,α
1
)=3,所以α
1
必可由α
2
,α
3
,α
4
线性表示。类似可判断选项B和C也不正确,只有选项D正确。实际上,由r(α
1
,α
2
,α
3
)=2,r(α
1
,α
2
,α
3
,α
4
)=3可知,α
4
不能由α
1
,α
2
,α
3
线性表示。
转载请注明原文地址:https://kaotiyun.com/show/mOj4777K
0
考研数学二
相关试题推荐
设连接两点A(0,1),B(1,0)的一条凸弧,P(χ,y)为凸弧AB上的任意点(图6.5).已知凸弧与弦AP之间的面积为χ3,求此凸弧的方程.
(cosχ-sinχ)dχ=_______.
设f(χ)在(-∞,+∞)内二次可导,令F(χ)=求常数A,B,C的值使函数F(χ)在(-∞,+∞)内二次可导.
设A,B都是n阶矩阵,并且A是可逆矩阵.证明:矩阵方程AX=B和XA=B的解相同AB=BA.
设A为3阶矩阵,α1,α2,α3是线性无关的3维列向量组,满足Aα1=α1+α2+α3,Aα2=2α2+α3,Aα3=2α2+3α3.求作矩阵B,使得A(α1,α2,α3)=(α1,α2,α3)B.
用变量代换x=cost(0<t<π)化简微分方程(1一x2)y’’一xy’+y=0,并求其满足y|x=0=1,y’|x=0=2的特解。
设a0,a1,…,an一1是n个实数,方阵(1)若λ是A的特征值,证明:ξ=[1,λ,λ2,…,λn一1]T是A的对应于特征值λ的特征向量;(2)若A有n个互异的特征值λ1,λ2,…,λn,求可逆阵P,使P一1AP=A.
设实方阵A=(aij)4×4满足:(1)aij=Aij(i,j=1,2,3,4,其中Aij为aij的代数余子式);(2)a11≠0,求|A|.
微分方程(y+x3)dx一2xdy=0满足y|x=1=的特解为________.
随机试题
女,58岁,咳嗽,咳血丝痰1个月,有低热及右胸痛,X线示右胸中等量积液。胸腔穿刺液检查示:淡红色,比重1.018,蛋白30g/L,细胞数0.5×109/L,ADA35U/L,CEA2%g/L,胸液未找到癌细胞及抗酸杆菌。最应考虑的是
照射量的SI单位是
患者,女76岁,以反复胸闷伴心悸5年为主诉就诊,患者此次发生心悸,持续6h不缓解,伴呼吸困难,不能平卧,咳嗽,咳少量泡沫样痰,BP110/86mmHg,听诊HR130/min,首选的治疗为
同病异治的实质是
男,7岁,突发寒战,高热,右膝下方剧痛3天,查体T39.8℃,P86次/分,R25次/分,BP110/60mmHg。烦躁不安,右膝关节呈半屈曲状,拒动,右小腿近端皮温高,肿胀不明显,压痛阳性。早期确诊最可靠的是()
又被称为第三方担保的是()
根据土地增值税规定,下列表述正确的有( )。
某公司一批优秀的中层干部竞选总经理职位。所有的竞选者除了李女士自身外,没有人能同时具备她的所有优点。从以上断定能合乎逻辑地得出以下哪项结论?()
改革开放以来,我省“扫黄”“打非”工作从未间断过,但文化市场中“制黄”“贩黄”“盗版”“盗印”等违法犯罪活动也从未停止,时有回潮。有人将“扫黄”“打非”屡打不绝的原因归纳为以下6个方面:(1)有关法律法规不完善。(2)存在有法不依、违法
萨皮尔一沃尔夫假说的形成——2004年英译汉及详解Therelationoflanguageandmindhasinterestedphilosophersformanycenturies.【F1】TheGreeksassum
最新回复
(
0
)