首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设三阶常系数齐次线性微分方程有特解y1=ex,y2=2xex,y3=3e-x,则该微分方程为( ).
设三阶常系数齐次线性微分方程有特解y1=ex,y2=2xex,y3=3e-x,则该微分方程为( ).
admin
2017-12-31
132
问题
设三阶常系数齐次线性微分方程有特解y
1
=e
x
,y
2
=2xe
x
,y
3
=3e
-x
,则该微分方程为( ).
选项
A、y’’’-y’’-y’+y=0
B、y’’’+y’’-y’-y=0
C、y’’’+2y’’-y’-2y=0
D、y’’’-2y’’-y’+2y=0
答案
A
解析
由y
1
=e
x
,y
2
=2xe
x
,y
3
=3e
-x
为三阶常系数齐次线性微分方程的特解可得其特征值为λ
1
=λ
2
=1,λ
3
=-1,其特征方程为(λ-1)
2
(λ+1)=0,即λ
3
-λ
2
-λ+1=0,所求的微分方程为y’’’-y’’+y=0,选(A).
转载请注明原文地址:https://kaotiyun.com/show/mPX4777K
0
考研数学三
相关试题推荐
设函数f(u)在(0,+∞)内具有二阶导数,且验证
设f(x,y)=I∫0xye-t2dt,求
试分析下列各个结论是函数z=f(x,y)在点P0(x0,y0)处可微的充分条件还是必要条件.(1)二元函数的极限存在;(2)二元函数z=f(x,y)在点(x0,y0)的某个邻域内有界;(3)(4)F(x)=f(x,y0)在点x0处可微,G(y)=f
设矩阵,且A3=O. (Ⅰ)求a的值; (Ⅱ)若矩阵X满足X一XA2一AX+AXA2=E,其中E为3阶单位矩阵,求X.
设向量组α1=(1,0,1)T,α2=(0,1,1)T,α3=(1,3,5)T不能由向量组β1=(1,1,1)T,β2=(1,2,3)T,β3=(3,4,α)T线性表示.(Ⅰ)求α的值;(Ⅱ)将β1,β2,β3用α1,α2,α3线性表示
两家影院竞争1000名观众,每位观众随机地选择影院且互不影响。试用中心极限定理近似计算:每家影院最少应设多少个座位才能保证“因缺少座位而使观众离去”的概率不超过1%?(Ф(2.328)=0.9900)
设z=x3f(xy,),f具有二阶连续偏导数,则=__________.
差分方程yt一2yt-1=b(b为常数)的通解是().
A,B,C是二阶矩阵,其中 则满足BA=CA的所有矩阵A=_________.
设函数f(x)=(x—x0)nφ(x)(n为任意自然数),其中函数φ(x)当x=x0时连续.(1)证明f(x)在点x=x0处可导;(2)若φ(x)≠0,问函数f(x)在x=x0处有无极值,为什么?
随机试题
目前强调小区与学校结合、家长参与教学,你该如何有效实施。
Morethanfortythousandreaderstoldusthattheylookedforinclosefriendships,whattheyexpected【C1】______friends,whatth
关于早期食管癌的叙述,下列哪项是错误的
中国古代社会一些启蒙作品多涉及当世的法律观念和司法制度,这在下列的哪些表述中有所体现?(2011年卷一56题)
与本行业所经营的商品有同样功能的其他商品是指()。
我国现行体育与健康课程的指导思想是()。
试分别叙述罗尔中值定理和拉格朗日中值定理。若以S(x)记由(a,f(a)),(b,f(b)),(x,f(x))三点组成的三角形面积,试对S(x)应用罗尔中值定理证明拉格朗日中值定理。
洗钱罪的犯罪对象不包括哪些犯罪所得?()
Ourworldnowmovessofastthatweseldomstoptoseejusthowfarwehavecomeinjustafewyears.ThelatestiPhone6s,for
WhatcouldpossiblyaccountfortheamazingsuccessofCoca-Cola?Howhasthiscombinationofcarbonatedwater(苏打水),sugar,acid
最新回复
(
0
)