首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知齐次线性方程组=有非零解,且矩阵A=是正定矩阵. 求当XTX=2时,XTAX的最大值,其中X=(x1,x2,x3)T∈R3.
已知齐次线性方程组=有非零解,且矩阵A=是正定矩阵. 求当XTX=2时,XTAX的最大值,其中X=(x1,x2,x3)T∈R3.
admin
2018-08-03
21
问题
已知齐次线性方程组=
有非零解,且矩阵A=
是正定矩阵.
求当X
T
X=2时,X
T
AX的最大值,其中X=(x
1
,x
2
,x
3
)
T
∈R
3
.
选项
答案
可求得A的最大特征值为10,设对应的单位特征向量为ξ(即Aξ=10ξ,且ξ
T
ξ=1).对二次型X
T
AX,存在正交变换X=PY,使X
T
AX[*]λ
1
y
1
+λ
2
y
2
+λ
3
y
3
≤10(y
1
2
+y
2
2
+y
3
2
),当X
T
X=Y
T
Y=y
1
2
+y
2
2
+y
3
2
=2时,有X
T
AX≤10×2=20,又X
0
=[*]ξ满足X
0
T
X
0
=2,且X
0
T
AX
0
=[*]=2ξ
T
(Aξ)=2ξ
T
(10ξ)=20(ξ
T
ξ)=20,综上可知[*]X
T
AX=20.
解析
转载请注明原文地址:https://kaotiyun.com/show/mgg4777K
0
考研数学一
相关试题推荐
设α,β是n维非零列向量,A=αβT+βαT.证明:r(A)≤2.
设A,B为两个n阶矩阵,下列结论正确的是().
设f(x)∈C[a,b],在(a,b)内可导,f(a)=f(b)=1.证明:存在ξ,η∈(a,b),使得2e2ξ—η=(ea+eb)[f’(η)+f(η)].
设函数f(x)(x≥0)可微,且f(x)>0.将曲线y=f(x),x=1,x=a(a>1)及x轴所围成平面图形绕x轴旋转一周得旋转体体积为,求:(1)f(x);(2)f(x)的极值.
设A=,方程组AX=β有解但不唯一.(1)求a;(2)求可逆矩阵P,使得P-1AP为对角阵;(3)求正交阵Q,使得QTAQ为对角阵.
设A为n阶矩阵,A11≠0.证明:非齐次线性方程组AX=b有无穷多个解的充分必要条件是A*b=0.
设A为n阶矩阵,若Ak—1α≠0,而Akα=0.证明:向量组α,Aα,…,Ak—1α线性无关.
证明S(x)=满足微分方程y(4)一y=0并求和函数S(x).
在全概率公式P(B)=P(Ai)P(B|AI)中,除了要求条件B是任意随机事件及P(Ai)>0(i=1,2,…,n)之外,我们可以将其他条件改为
随机试题
A.腰2~3间盘后外侧突出B.腰3~4间盘后外侧突出C.腰4~5间盘后外侧突出D.腰5骶1间盘后外侧突出E.骶1~2间盘后外侧突出趾跖屈乏力或不能,外踝部和足外侧皮肤感觉改变,出现在
血液透析患者最常见的并发症是
房地产租赁经营、物业管理和()合称房地产服务业。
按照我国现行规定,某县发生的重大事故的事故调查组应由()负责组织。
企业纳税年度发生的亏损,准予向以后年度结转的最长年限不得超过()。
下列关于资金时间价值的论述,正确的有()
位于重庆巫山县的巫山峰峦起伏、江流曲折,其景观以()闻名。
革命根据地时期,规定以参议会作为管理政权机关的宪法性文件是()。
LondonCabbies(出租车司机)Everycityintheworldhastaxistotaketouriststointerestingplaces.Londonistheonlycityint
A、Shemadeitherself.B、Shehasatailormakeit.C、Sheboughtitalongtimeago.D、Shehasanoldonere-made.B选项中出现“tailor,
最新回复
(
0
)