首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知齐次线性方程组=有非零解,且矩阵A=是正定矩阵. 求当XTX=2时,XTAX的最大值,其中X=(x1,x2,x3)T∈R3.
已知齐次线性方程组=有非零解,且矩阵A=是正定矩阵. 求当XTX=2时,XTAX的最大值,其中X=(x1,x2,x3)T∈R3.
admin
2018-08-03
24
问题
已知齐次线性方程组=
有非零解,且矩阵A=
是正定矩阵.
求当X
T
X=2时,X
T
AX的最大值,其中X=(x
1
,x
2
,x
3
)
T
∈R
3
.
选项
答案
可求得A的最大特征值为10,设对应的单位特征向量为ξ(即Aξ=10ξ,且ξ
T
ξ=1).对二次型X
T
AX,存在正交变换X=PY,使X
T
AX[*]λ
1
y
1
+λ
2
y
2
+λ
3
y
3
≤10(y
1
2
+y
2
2
+y
3
2
),当X
T
X=Y
T
Y=y
1
2
+y
2
2
+y
3
2
=2时,有X
T
AX≤10×2=20,又X
0
=[*]ξ满足X
0
T
X
0
=2,且X
0
T
AX
0
=[*]=2ξ
T
(Aξ)=2ξ
T
(10ξ)=20(ξ
T
ξ)=20,综上可知[*]X
T
AX=20.
解析
转载请注明原文地址:https://kaotiyun.com/show/mgg4777K
0
考研数学一
相关试题推荐
设随机变量X的密度函数为f(x)=,则E(X)=___________,D(X)___________.
设α,β是n维非零列向量,A=αβT+βαT.证明:r(A)≤2.
设A为n阶非奇异矩阵,α是n维列向量,b为常数,P=(1)计算PQ;(2)证明PQ可逆的充分必要条件是αTA-1α≠b.
设A是正交矩阵,且|A|<0.证明:|E+A|=0.
设A,B都是三阶矩阵,A=,且满足(A*)-1B=ABA+2A2z,则B=___________.
设f(x)在[0,2]上连续,在(0,2)内二阶可导,且f(x)dx,证明:存在ξ∈(0,2),使得f’(ξ)+f"(ξ)=0.
设A=相似于对角阵.求:(1)a及可逆阵P,使得P-1AP=为对角阵;(2)A100.
设α1,α2,…,αt为n个n维向量,证明:α1,α2,…,αt线性无关的充分必要条件是任一n维向量总可由α1,α2,…,αt线性表示.
判别下列级数的敛散性(包括绝对收敛或条件收敛):
判定下列级数的敛散性,当级数收敛时判定是条件收敛还是绝对收敛:
随机试题
审美活动与真和善的关系是()
设L是抛物线y=x2上从点(0,0)到点(2,4)的一段弧,则∫L(x2-y2)dx=_________.
A.CAl25B.CEAC.CAl5-3D.NSEE.PSA作为前列腺癌的辅助诊断项目是()
李某工资和奖金应纳个人所得税为()元。李某翻译收入应纳个人所得税为()元。
企业按规定计算缴纳的下列税金,应当计入相关资产成本的是()。
()的规范化是实现各项工作规范化的前提和保证。
Apartfromtheirdifferences,thecoupleweredevelopinganobviousandgenuineaffectionforeachother.
Thedifferencebetweenaliquidandagasisobvious【C1】______theconditionsoftemperatureandpressurecommonlyfoundatthes
Eliotwaswrappedupin______whenhebegantowritepoems.WhichofthefollowingstatementisNOTtrueofEliot’sfirstpoem?
A、Theyusuallyleavetheirchildrenalone.B、Theyallowforfailureonthepartoftheirchildren.C、Theycontroltheirchildren
最新回复
(
0
)