首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为n阶实对称矩阵,满足A2=层,并且r(A+E)=k<n. ①求二次型xTAx的规范形. ②证明B=E+A+A2+A3+A4是正定矩阵,并求|B|.
设A为n阶实对称矩阵,满足A2=层,并且r(A+E)=k<n. ①求二次型xTAx的规范形. ②证明B=E+A+A2+A3+A4是正定矩阵,并求|B|.
admin
2017-11-22
66
问题
设A为n阶实对称矩阵,满足A
2
=层,并且r(A+E)=k<n.
①求二次型x
T
Ax的规范形.
②证明B=E+A+A
2
+A
3
+A
4
是正定矩阵,并求|B|.
选项
答案
①由于A
2
=E,A的特征值λ应满足λ
2
=1,即只能是1和—1.于是A+E的特征值只能是2和0.A+E也为实对称矩阵,它相似于对角矩阵Λ,Λ的秩等于r(A+E)=k.于是A+E的特征值是2(后重)和0(n—k重),从而A的特征值是1(k重)和—1(n—k重).A的正,负关系惯性指数分别为k和n—k,x
T
Ax的规范形为 y
1
2
+y
2
2
+…+y
k
2
一y
k+1
2
一…一y
n
2
, ②B是实对称矩阵,由A
2
=E,有B= 3E+2A,B的特征值为5(k重)和1(n—k重)都是正数.因此B是正定矩阵. ∴ |B|=5
k
.1
n—k
= 5
k
.
解析
转载请注明原文地址:https://kaotiyun.com/show/mnX4777K
0
考研数学三
相关试题推荐
求函数f(x)=ln(1一x一2x2)的幂级数,并求出该幂级数的收敛域.
设y=y(x)满足y’=x+y,且满足y(0)=1,讨论级数的敛散性.
设二维随机变量(X,Y)服从二维正态分布,且X~N(1,32),Y~N(0,42),且X,Y的相关系数为(1)求E(Z),D(Z);(2)求ρXY;(3)X,Z是否相互独立?为什么?
设二阶常系数线性微分方程y"+ay’+by=ce有特解y=e2x+(1+x)ex,确定常数a,b,c,并求该方程的通解.
设f(x)在[a,b]是二阶可导,且f’(a)=f’(b)=0.证明:存在ξ∈(a,b),使得|f(ξ)≥|f(a)一f(b)|.
假设一批产品的不合格品数与合格品数之比为R(未知常数).现在按还原抽样方式随意抽取的n件中发现k件不合格品.试求R的最大似然估计值.
设随机向量(X,y)的概率密度f(x,y)满足f(x,y)=f(一x,y),且ρXY存在,则ρXY=()
当x→0时,f(x)=为x的三阶无穷小,则a,b分别为()
已知α1=[1,2,一3,1]T,α2=[5,一5,a,11]T,α3=[1,一3,6,3]T,α4=[2,一1,3,a]T.问:a为何值时,α4能由α1,α2,α3线性表出,并写出它的表出式.
一个罐子里装有黑球和白球,黑、白球数之比为a:1。现有放回的一个接一个地抽球,直至抽到黑球为止,记X为所抽到的白球个数.这样做了n次以后,获得一组样本:X1,X2,…,Xn。基于此,求未知参数a的矩估计和最大似然估计.
随机试题
企业使命
Sicknessdeprivedme______thechanceofseeingyou.
旅馆和公共建筑生活用水定额确定的依据是()
如果某项目生产经营期的第一年出现亏损,则该项目在此年可以免缴()。
( )是保险代理从业人员将代收保费的一部分交付所属机构,另一部分据为已有的行为。
《论语·为政》指出:“道之以政,齐之以刑,民免而无耻;道之以德,齐之以礼,有耻且格。”这一观点反映了()。
从幼儿在园一日活动的主要类型来分,幼儿园环境可分为游戏活动环境、学习活动环境和()。
下列关于生物遗传的叙述错误的是()。
Thedestructionofournaturalresourcesandcontaminationofourfoodsupplycontinuetooccur,largelybecauseoftheextreme
以下程序段运行结束后,变量x的值为()。x=2y=4dox=x*yy=y+1LoopWhiley
最新回复
(
0
)