首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
讨论曲线y=4lnx+k与y=4x+ln4x的交点个数.
讨论曲线y=4lnx+k与y=4x+ln4x的交点个数.
admin
2021-01-19
61
问题
讨论曲线y=4lnx+k与y=4x+ln
4
x的交点个数.
选项
答案
设ψ(x)=ln
4
x-4lnx+4x-k,则有[*] 不难看出,x=1是ψ(x)的驻点. 当0<x<1时,ψ’(x)<0,即ψ(x)单调减少; 当x>1时,ψ’(x)>0,即ψ(x)单调增加, 故ψ(1)=4-k为函数ψ(x)的最小值. 当k<4,即4-k>0时,ψ(x)=0无实根,即两条曲线无交点; 当k=4,即4-k=0时,ψ(x)=0有唯一实根,即两条曲线只有一个交点; 当k>4,即4—k<0时,由于[*] 故ψ(x)=0有两个实根,分别位于(0,1)与(1,+∞)内,即两条曲线有两个交点.
解析
[分析] 问题等价于讨论方程ln
4
z-4lnx+4x-k=0有几个不同的实根,本题相当于一函数作图题,通过单调性、极值的讨论即可确定实根的个数(与x轴交点的个数).
[评注] 讨论曲线与坐标轴的交点,在构造辅助函数时,应尽量将待分析的参数分离开来,使得求导后不含参数,便于求驻点坐标.
转载请注明原文地址:https://kaotiyun.com/show/mw84777K
0
考研数学二
相关试题推荐
x=-1
设f(x)在(一∞,+∞)内有定义,且对于任意x与y均有f(x+y)=f(x)ey+f(y)ex,又设f’(0)存在且等于a(a≠0).试证明:对任意:f’(x)都存在,并求f(x).
设e-x2是f(x)的一个原函数,下述两个反常积分(Ⅰ)=x4f′(x)dx,(Ⅱ)=x3f″(x)dx,正确的结论是()
设y=y(χ)是方程2χydχ+(χ2-1)dy=0及条件y(0)=1的解,则y(χ)dχ=()
已知3阶矩阵曰为非零向量,且B的每一个列向量都是方程组的解,(I)求λ的值;(Ⅱ)证明|B|=0.
设f(x),g(x)均有二阶连续导数且满足f(0)>0,f′(0)=0,g(0)=0,则函数u(x,y)=f(x)∫1yg(t)dt在点(0,0)处取极小值的一个充分条件是
设A是三阶矩阵,已知|A+E|=0,|A+2E|=0,|A+3E|=0,则|A+4E|=______.
设X为三维单位列向量,E为三阶单位矩阵,则矩阵E—XXT的秩为______。
设L:y=e-x(x≥0).求由y=e-x、x轴、y轴及x±a(a>0)所围成平面区域绕x轴一周而得的旋转体的体积V(a).
(1991年)设y=ln(1+3-χ),则dy=_______.
随机试题
A.太冲、太溪B.合谷、丰隆C.足三里、气海D.太溪、风池中风中经络中属气虚血瘀者除选主穴外还可配用
亚里士多德认为悲剧韵作用在于【】
胎盘剥离征象不包括
某患者经常毁坏红颜色的物品如电话机、衣服等,谓“红色要我死亡”,此症为()
美国一家以生产服装为主的知名公司,为开拓国际市场,方便业务往来,现拟在我国的几个大城市各设一个办事处。下列表述中符合我国公司法的规定的一项是________。
高层建筑的雨水管一般要用()。
下列关于保修义务的承担和维修的经济责任承担应当遵循的处理原则的说法中,正确的有()。
不同部门或人群对教师职业有不同的期待,使得教师有时候左右为难,这是()
中共中央、国务院印发的《国家创新驱动发展战略纲要》提出,到2020年我国进入()。
December20th1998DearEditor,TheAmericanrailroadindustry’scommitmenttosafetyisdemonstratedbyasteadilydeclinin
最新回复
(
0
)