首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(χ)在χ0的邻域内三阶连续可导,且f′(χ0)=f〞(χ0)=0,f〞′(χ0)>0,则下列结论正确的是( ).
设f(χ)在χ0的邻域内三阶连续可导,且f′(χ0)=f〞(χ0)=0,f〞′(χ0)>0,则下列结论正确的是( ).
admin
2019-07-10
42
问题
设f(χ)在χ
0
的邻域内三阶连续可导,且f′(χ
0
)=f〞(χ
0
)=0,f〞′(χ
0
)>0,则下列结论正确的是( ).
选项
A、χ=χ
0
为f(χ)的极大点
B、χ=χ
0
为f(χ)的极小点
C、(χ
0
,f(χ
0
))为曲线y=f(χ)的拐点
D、(χ
0
,f(χ
0
))不是曲线y=f(χ)的拐点
答案
C
解析
,
由极限的保号性,存在δ>0,当0<|χ-χ
0
|时,
当χ∈(χ
0
-δ,χ
0
)时,f〞(χ)<0,则χ∈(χ
0
,χ
0
+δ)时,f〞(χ)>0,则(χ
0
,f(χ
0
))为曲线y=f(χ)的拐点,选C.
转载请注明原文地址:https://kaotiyun.com/show/6EN4777K
0
考研数学二
相关试题推荐
当x→0时,α(x)=kx2与β(x)=是等价无穷小,则k=_______。
设当x→0时,(1-cosx)ln(1+x2)是比xsinxn高阶的无穷小,xsinxn是比(-1)高阶的无穷小,则正整数n等于()
设函数f(x),g(x)在区间[a,b]上连续,且f(x)单调增加,0≤g(x)≤1,证明:(Ⅰ)0≤∫axg(t)dt≤x-a,x∈[a,b];f(x)dx≤∫abf(x)g(x)dx。
设A,B为三阶矩阵,且A~B,且λ1=1,λ2=2为A的两个特征值,|B|=2,求.
设函数f(x)在[0,+∞)内可导,f(0)=1,且f’(x)+f(x)-证明:当x≥0时,e-x≤f(x)≤1.
设y=f(x)有二阶连续导数,且满足xy"+3xy’2=1-e-x.(1)若f(x)在x=c(c≠0)处取得极值,证明f(c)是极小值.(2)若f(x)在x=0处取得极值,问f(0)是极小值还是极大值?(3)若f(0)=f’(0)=0,证
设A为三阶矩阵,ξ1,ξ2,ξ3是三维线性无关的列向量,且Aξ1=-ξ1+2ξ2+2ξ3,Aξ2=2ξ1-ξ2-2ξ3,Aξ3=2ξ1-2ξ2-ξ3.求|A*+2E|.
设A是n阶矩阵,Am=0,证明E-A可逆.
设证明:行列式|A|=(n+1)an.
随机试题
浓硫酸可以用铁制的容器盛放。 ()
顺式作用元们:是指
凡生疮疡,毒不外泄,反陷入里,称为
A.可引起瞳孔扩大B.可引起呼吸抑制C.可引起共济失调D.可引起急性心力衰竭E.可引起再生障碍性贫血碳酸锂
患者,女,18岁,因骨盆多处骨折入院,伴多个脏器损伤,病情观察中最重要的是及时发现其是否出现了
股票的基本特征包括()。
根据企业国有资产法律制度的规定,下列属于上市公司国有股权变动方式的有()。
当前世界新军事变革是最广泛的一次军事革命,其核心是:
Nearlyacenturyago,biologistsfoundthatiftheyseparatedaninvertebrateanimalembryointotwopartsatanearlystageof
WherewillRaphaelgothismorning?
最新回复
(
0
)