首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设常数a>0,函数g(x)在区间[一a,a]上存在二阶导数,且g"(x)>0. 证明:
设常数a>0,函数g(x)在区间[一a,a]上存在二阶导数,且g"(x)>0. 证明:
admin
2019-05-11
75
问题
设常数a>0,函数g(x)在区间[一a,a]上存在二阶导数,且g"(x)>0.
证明:
选项
答案
因为当0≤x≤a时,h’(x)≥0,h(x)单调增加;f(x)=e
-x
2
在0≤x≤a时单调减少,所以不论0≤x≤y≤a还是0≤y≤x≤a,均有[h(x)一h(y)][e
-x
2
一e
-y
2
]≤0,即只要(x,y)∈D={(x,y)|0≤x≤a,0≤y≤a},有 h(x)e
-x
2
+h(y)e
-y
2
)≤h(x)e
-y
2
+h(y)e
-x
2
. 于是有 [*] 即有 [*] 又因为h(x)与e
-y
2
都是偶函数,所以 [*] 再以h(x)=g(x)+g(一x)代入,并注意到 [*] 同理[*]从而式(*)成为 [*] 证毕.
解析
转载请注明原文地址:https://kaotiyun.com/show/n5V4777K
0
考研数学二
相关试题推荐
确定常数a,b,c,使得=c.
计算(4-χ2-y2)dχdy,其中D为由圆χ2+y2=2y所围成的平面闭区域.
设f(χ)在区间[0,1]上可导,f(1)=2χ2f(χ)dχ.证明:存在ξ∈(0,1),使得2f(ξ)+ξf′(ξ)=0.
求微分方程y〞+4y′+4y=eaχ的通解.
设二阶常系数齐次线性微分方程以y1=e2χ,y2=2e-χ-3e2χ为特解,求该微分方程.
设φ1(χ),φ2(χ)为一阶非齐次线性微分方程y′+P(χ)y=Q(χ)的两个线性无关的特解,则该方程的通解为().
设A,B为n阶矩阵,(1)求P.Q;(2)证明:当P可逆时,Q也可逆.
已知矩阵A=有两个线性无关的特征向量,则a=________.
微分方程掣=y(χy-χ+y-1)的通解为________.
函数的无穷间断点的个数是()
随机试题
节律性起始技术是属于
有关HELLP综合征,以下哪项是错误的
中国现行版药典是
下列最适合使用美托洛尔治疗的疾病是
阿托品用于解除消化道痉挛时,常可引起口干,属于氯霉素或抗肿瘤药所致的骨髓抑制,属于
甲向首饰店购买钻石戒指二枚,标签表明该钻石为天然钻石,买回后被人告知实为人造钻石。甲遂多次与首饰店交涉,历时1年零6个月,未果。现甲欲以欺诈为由诉请法院撤销该买卖关系,其主张能否得到支持?( )。
货币市场基金同时以股票、债券为主要投资对象,通过不同资产类别的配置投资,实现风险和收益上的平衡。()
从绝对量的构成看,资本成本包括()。
把下面的六个图形分为两类,使每一类图形都有各自的共同特征或规律,分类正确的一项是:
设二维随机变量(X,Y)满足E(XY)=EXEY,则X与Y
最新回复
(
0
)