首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知齐次方程组(I) 解都满足方程x1+x2+x3=0,求a和方程组的通解.
已知齐次方程组(I) 解都满足方程x1+x2+x3=0,求a和方程组的通解.
admin
2018-11-20
84
问题
已知齐次方程组(I)
解都满足方程x
1
+x
2
+x
3
=0,求a和方程组的通解.
选项
答案
求出(I)的解,代入x
1
+x
2
+x
3
=0,决定a. 用矩阵消元法,设系数矩阵为A, [*] 当a=0时,(I)和方程x
1
+x
2
+x
4
=0同解,以x
2
,x
3
,x
4
为自由未知量求出一个基础解系 η
1
=(一1,1,0,0)
T
,η
2
=(0,0,1,0)
T
,η
3
=(一1,0,0,1)
T
. 其中η
2
,η
3
都不是x
1
+x
2
+x
3
=0,的解,因此a=0不合要求. 当a≠0时,继续对B进行初等行变换 [*] 以x
4
为自由未知量,得基础解系η=(a一1,一a,[*],1)
T
.代入x
1
+x
2
+x
3
=0, [*] 求得a=1/2.即当a=1/2时,η适合x
1
+x
2
+x
3
=0,从而(I)的解都满足x
1
+x
2
+x
3
=0.当a≠1/2时,η不满足x
1
+x
2
+x
3
=0. 得a=1/2为所求.此时,方程组的通解为c(一1/2,一1/2,1,1)
T
,c可取任何常数.
解析
转载请注明原文地址:https://kaotiyun.com/show/n5W4777K
0
考研数学三
相关试题推荐
设y=y(x)是一向上凸的连续曲线,其上任意一点(x,y)处的曲率为,又此曲线上的点(0,1)处的切线方程为y=x+1,求该曲线方程,并求函数y(x)的极值.
利用变换x=arctant将方程cos4x+cos2x(2一sin2x)+y=tanx化为y关于t的方程,并求原方程的通解.
就k的不同取值情况,确定方程x3一3x+k=0根的个数.
设u=U(x,y)由方程组u=f(x,y,z,t),g(y,z,t)=0,h(z,t)=0确定,其中f,g,h连续可偏导且
已知A,B为三阶非零方阵,为齐次线性方程组BX=0的3个解向量,且AX=β3有非零解.(1)求a,b的值;(2)求BX=0的通解.
已知F(x),g(x)连续可导,且f’(x)=g(x),g’(x)=f(x)+φ(x),其中φ(x)为某已知连续函数,g(x)满足微分方程g’(x)-xg(x)=cosx+φ(x),求不定积分∫xf"(x)dx.
随机试题
塑性指标中没有()。
A.无肌肉收缩B.一次单收缩C.一连串单收缩D.不完全强直收缩E.完全强直收缩
臂丛神经的组成是
化脓菌入血、生长繁殖、产生毒素、形成多发性脓肿,最合适的病名是
患儿,女,4个月。因发热3天、抽搐1天入院,体温波动于38~39.5℃,无咳嗽,一天前出现频繁抽搐,伴喷射性呕吐。体格检查:精神萎靡,易激惹,外耳道有脓性分泌物,克氏征和巴宾斯基征阳性,初步诊断为化脓性脑膜炎。按医嘱静脉给予青霉素时下列不正确的操作是
甲向乙借款5万元,还款期限6个月,丙作保证人,约定丙承担保证责任直至甲向乙还清本息为止。丙的保证责任期间应如何计算?
铁路工程造价标准包括()。
固定资产中小修理的特点是()。
中国公民孙某系自由职业者,2009年收入情况如下:(1)出版中篇小说一部,取得稿酬50000元,后因小说加印和报刊连载,分别取得出版社稿酬10000元和报社稿酬3800元。(2)受托对一电影剧本进行审核,取得审稿收入15000元。
视网膜上的锥体细胞与杆体细胞的区别有()
最新回复
(
0
)