首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α1,α2,…,αs,β1,β2,…,βt线性无关,其中α1,α2,…,αs是齐次方程组AX=0的基础解系.证明Aβ1,Aβ2,…,Aβt线性无关.
设α1,α2,…,αs,β1,β2,…,βt线性无关,其中α1,α2,…,αs是齐次方程组AX=0的基础解系.证明Aβ1,Aβ2,…,Aβt线性无关.
admin
2018-11-23
34
问题
设α
1
,α
2
,…,α
s
,β
1
,β
2
,…,β
t
线性无关,其中α
1
,α
2
,…,α
s
是齐次方程组AX=0的基础解系.证明Aβ
1
,Aβ
2
,…,Aβ
t
线性无关.
选项
答案
用定义法证. 设c
1
Aβ
1
+c
2
Aβ
2
+…+c
t
Aβ
t
=0.则A(cβ+cβ+…+cβ)=0即c
1
β
1
+c
2
β
2
+…+c
t
β
t
.是AX=0的一个解.于是它可以用α
1
,α
2
,…,α
s
线性表示: c
1
β
1
+c
2
β
2
+…+c
t
β
t
=t
1
α
1
+t
2
α
2
+…+t
s
α
s
, 再由α
1
,α
2
,…,α
s
,β
1
,β
2
,…,β
t
线性无关,得所有系数都为0.
解析
转载请注明原文地址:https://kaotiyun.com/show/n9M4777K
0
考研数学一
相关试题推荐
设B是秩为2的5×4矩阵,α1=(1,1,2.3)T,α2=(一1,1,4,一1)T,α3=(5,一1,一8,9)T都是齐次线性方程组BX=0的解向量.求BX=0的解空间的一个标准正交基.
设A是秩为3的5×4矩阵,α1,α2,α3是非齐次线性方程组Ax=b的三个不同的解,若α1+α2+2α3=(2,0,0,0)T,3α1+α2=(2,4,6,8)T,则方程组Ax=b的通解是___________.
已知随机变量X~N(-3,1),Y~N(2,1),且X,Y相互独立,设随机变量Z=X-2Y+7,则Z~________
设函数y=f(x)由方程y-x=ex(1-y)确定,则=__________。
方程f(x)==0的全部根是_____.
已知曲线L的方程为,(t≥0)1)讨论L的凹凸性;2)过点(一1,0)引L的切线,求切点(x0,y0),并写出切线方程;3)求此切线L(对应于x≤x0的部分)及x轴所围成的平面图形面积.
设函数f(x)连续,则下列函数中,必为偶函数的是
设为正定矩阵,其中A,B分别为m阶,n阶对称矩阵,C为m×n矩阵.(1)计算PTDP,其中(Ek为k阶单位矩阵);(2)利用(1)的结果判断矩阵B一CTA-1C是否为正定矩阵,并证明你的结论.
已知随机变量X与Y独立,且X服从[2,4]上的均匀分布,Y~N(2,16).求cov(2X+XY,(Y-1)2).
(10年)设已知线性方程组Ax=b存在2个不同的解.(I)求λ,a;(Ⅱ)求方程组Ax=b的通解.
随机试题
试述正面教育与纪律约束相结合的德育原则。
丙承租了甲、乙共有的房屋,因未付租金被甲、乙起诉。一审法院判决丙支付甲、乙租金及利息共计10000元,分5个月履行,每月给付2000元。甲、乙和丙均不服该判决,提出上诉:乙请求改判丙一次性支付所欠的租金10000元。甲请求法院判决解除与丙之间租赁关系。丙认
连接泡沫产生装置的泡沫混合液管道上的控制阀,要安装在防火堤外压力表接口外侧,并有明显的启闭标志;泡沫混合液管道设置在地上时,控制阀的安装高度一般控制在()m,当环境温度为0℃及以下的地区采用铸铁控制阀时,若管道设置在地上,铸铁控制阀要安
建筑物的年龄可分为实际年龄和()。
按照波特的价值链理论,企业的下列各项活动中,属于支持活动的有()。
团队旅游接待的成败关键在于导游讲解。
当前老百姓对政府发布的信息、道歉不太相信,被称为“老不信”,你如何看待这种“信任墙”危机?
设函数f0(x)在(一∞,+∞)内连续,fn(x)=∫0xfn一1(t)dt(n=1,2,…).证明:fn(x)=∫0xf0(t)(z一t)n一1dt(n=1,2,…);
最近、家族間の殺人など、信じ________ニュースが多いです。
FilmProsellsmillionsofvideocassettesdirectlytoconsumersat$25apiecefora$10profitoneach.However,FilmProislosi
最新回复
(
0
)