首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(05年)设二维随机变量(X,Y)的概率密度为 求:(Ⅰ)(X,Y)的边缘概率密度fX(χ),fY(Y); (Ⅱ)Z=2X-Y的概率密度fZ(Z); (Ⅲ)
(05年)设二维随机变量(X,Y)的概率密度为 求:(Ⅰ)(X,Y)的边缘概率密度fX(χ),fY(Y); (Ⅱ)Z=2X-Y的概率密度fZ(Z); (Ⅲ)
admin
2019-05-11
21
问题
(05年)设二维随机变量(X,Y)的概率密度为
求:(Ⅰ)(X,Y)的边缘概率密度f
X
(χ),f
Y
(Y);
(Ⅱ)Z=2X-Y的概率密度f
Z
(Z);
(Ⅲ)
选项
答案
(Ⅰ)f
X
(χ)=∫
-∞
-∞
f(χ,y)dy 当χ≤0或χ≥1时,fχ(χ)=0; 当0<χ<1时,f
X
(χ)=∫
0
2χ
1dy=2χ. 故f
x
(χ)=[*] 同理,f
Y
(y)=∫
-∞
+∞
f(χ,y)dχ 当y≤0或y≥2时,f
Y
(y)=0; 当0<y<2时,f
Y
(y)=[*] 故f
Y
(y)=[*] 积分的讨论和定限可见图(a). (Ⅱ)Z的分布函数为: F
z
(z)=P{Z≤z}=P{2X-Y≤2)=[*]f(χ,y)dχdy 当[*]≥1即z≥2时,F
z
(z)=1,∴f
z
(z)=F′
z
(z)=0(参见图(b)) 当[*]<0即z<0时,F
z
(z)=0,∴f
z
(z)=F′
z
(z)=0(参见图(c)) 当0≤[*]<1即0≤z<2时, [*] ∴f
z
(z)=F′
z
(z)=1-[*](参见图(d)). 故f
z
(z)=[*] [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/nBJ4777K
0
考研数学三
相关试题推荐
设(X1,X2,X3)为来自总体X的简单随机样本,则下列不是统计量的是().
设A为n阶矩阵,下列结论正确的是().
设y(x)为微分方程y’’-4y’+4y=0满足初始条件y(0)=1,y’(0)=2的特解,则∫01y(z)dx=______.
设矩阵A=为A*对应的特征向量.(1)求a,b及α对应的A*的特征值;(2)判断A可否对角化.
设有来自三个地区的各10名、15名和25名考生的报名表,其中女生的报名表分别为3份、7份和5份.随机取出一个地区,再从中抽取两份报名表.(1)求先抽到的一份报名表是女生表的概率p;(2)设后抽到的一份报名表为男生的报名表,求先抽到的报名表为女生报名表的
设试验成功的概率为,失败的概率为,独立重复试验直到成功两次为止.求试验次数的数学期望.
设随机变量X满足|X|≤1,且P(X=-1)=,P(X=1)=,在{-1<x<1}发生的情况下,X在(-1,1)内任一子区间上的条件概率与该子区间长度成正比.(1)求X的分布函数;(2)求P(X<0).
I(x)=du在区间[-1,1]上的最大值为______.
(2007年)如图,连续函数y=f(x)在区间[一3,一2],[2,3]上的图形分别是直径为1的上、下半圆周,在区间[-2,0],[0,2]上图形分别是直径为2的上、下半圆周,设F(x)=∫0xf(t)dt则下列结论正确的是()
设x=rcosθ,y=rsinθ,把下列直角坐标系中的累次积分改写成极坐标系(r,θ)中的累次积分:
随机试题
(2013年)存款准备金政策是中央银行实施货币政策的重要工具,其主要内容包括()。
采用时态法折算外币会计报表时,按照历史汇率折算的会计报表项目有
A.胸大肌B.斜方肌C.三角肌D.冈上肌只能外展肩关节的是()
有关结核病下列不正确的是
患者,男,80岁。因进不洁食物后呕吐胃内容物、腹泻2天,昏迷1天,无畏寒、发热,既往有高血压病史8年余。查体:体温38.7℃,脉搏116次/分,呼吸28次/分,脉搏70/55mmHg,无压眶反应,皮肤干燥、弹性极差,心、肺、腹无明显异常。尿糖(++++),
盈余公积是企业按规定从税后利润中提取的积累资金,主要用于()。
下列各项中,不符合我国《劳动法》相关规定的是()。
论述学校教育在儿童发展过程中起何作用。
ChrisBaildon,tallandlean,wasinhisearlythirties,andtheendproductofanolddecayedislandfamily.Chrisshared
Ifonlythepatient______adifferenttreatmentinsteadofusingtheantibiotics,hemightstillbealivenow.
最新回复
(
0
)