首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(05年)设二维随机变量(X,Y)的概率密度为 求:(Ⅰ)(X,Y)的边缘概率密度fX(χ),fY(Y); (Ⅱ)Z=2X-Y的概率密度fZ(Z); (Ⅲ)
(05年)设二维随机变量(X,Y)的概率密度为 求:(Ⅰ)(X,Y)的边缘概率密度fX(χ),fY(Y); (Ⅱ)Z=2X-Y的概率密度fZ(Z); (Ⅲ)
admin
2019-05-11
54
问题
(05年)设二维随机变量(X,Y)的概率密度为
求:(Ⅰ)(X,Y)的边缘概率密度f
X
(χ),f
Y
(Y);
(Ⅱ)Z=2X-Y的概率密度f
Z
(Z);
(Ⅲ)
选项
答案
(Ⅰ)f
X
(χ)=∫
-∞
-∞
f(χ,y)dy 当χ≤0或χ≥1时,fχ(χ)=0; 当0<χ<1时,f
X
(χ)=∫
0
2χ
1dy=2χ. 故f
x
(χ)=[*] 同理,f
Y
(y)=∫
-∞
+∞
f(χ,y)dχ 当y≤0或y≥2时,f
Y
(y)=0; 当0<y<2时,f
Y
(y)=[*] 故f
Y
(y)=[*] 积分的讨论和定限可见图(a). (Ⅱ)Z的分布函数为: F
z
(z)=P{Z≤z}=P{2X-Y≤2)=[*]f(χ,y)dχdy 当[*]≥1即z≥2时,F
z
(z)=1,∴f
z
(z)=F′
z
(z)=0(参见图(b)) 当[*]<0即z<0时,F
z
(z)=0,∴f
z
(z)=F′
z
(z)=0(参见图(c)) 当0≤[*]<1即0≤z<2时, [*] ∴f
z
(z)=F′
z
(z)=1-[*](参见图(d)). 故f
z
(z)=[*] [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/nBJ4777K
0
考研数学三
相关试题推荐
某湖泊水量为V,每年排入湖泊中内含污染物A的污水量为,流入湖泊内不含A的水量为,流出湖的水量为.设1999年底湖中A的含量为5m0,超过国家规定指标.为了治理污染,从2000年初开始,限定排入湖中含A污水的浓度不超过.问至多经过多少年,湖中污染物A的含量降
随机变量X的密度函数为f(x)=ke-|x|(-∞<x<+∞),则E(X2)=______.
设齐次线性方程组,有非零解,且A=为正定矩阵,求a,并求当|X|=时XTAX的最大值.
10件产品中4件为次品,6件为正品,现抽取2件产品.(1)求第一件为正品,第二件为次品的概率;(2)在第一件为正品的情况下,求第二件为次品的概率;(3)逐个抽取,求第二件为正品的概率.
设有方程组AX=0与BX=0,其中A,B都是m×n阶矩阵,下列四个命题:(1)若AX=0的解都是BX=0的解,则r(A)≥r(B)(2)若r(A)≥r(B),则AX=0的解都是BX=0的解(3)若AX=0与BX=0同解,则r(A)=r(B)(4)若
设二维随机变量(X,Y)的联合分布律为则在Y=1的条件下求随机变量X的条件概率分布.
设平面区域D由曲线与直线及y轴围成,计算二重积分
已知z=f(x,y)满足:dz=2xdx一4ydy且f(0,0)=5.求f(x,y)在区域D={(x,y)|x2+4y2≤4}上的最小值和最大值.
[2005年]以下四个命题中正确的是().
随机试题
下列属于股份有限公司章程绝对必要记载事项的是()
在维持膝关节稳定性诸因素中,下列哪项最重要
某男,54岁,2小时前因家事不和突然出现心前区疼痛,为隐痛呈阵发性,现已发作3次,每次持续数分钟。伴脘腹胀闷,嗳气则舒。诊见,时时叹息,苔薄白,脉细弦。若疾病进一步发展,出现剧烈持久的心前区疼痛,休息服药均不能缓解,伴心悸,大汗淋漓,面色苍白,四肢厥冷
吉兰一巴雷综合征脑脊液蛋白细胞分离现象出现的时间最多见于
A.枳实、芍药B.芍药、大黄C.大黄、桂枝D.桂枝、吴茱萸E.吴茱萸、五味子桃核承气汤含有
承担联合体协议中同一专业工程的成员,按照()确定联合体投标人的资质等级。
某企业银行存款期初借方余额为20万元,本期借方发生额为5万元,本期贷方发生额为13万元,则期末借方余额为12万元。()
人体肺部实现气体交换的场所是()。
[2015年第31—32题]基于以下题干:某次讨论会共有18名参与者,已知:(1)至少有5名青年教师是女性;(2)至少有6名女教师已过中年;(3)至少有7名女青年是教师。根据上述信息,关于参会人员可以得出以下哪项
•Readthearticlebelowaboutacompany.•ChoosethecorrectwordtofilleachgapfromA,B,CorD.•Foreachquestion(
最新回复
(
0
)