首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(05年)设二维随机变量(X,Y)的概率密度为 求:(Ⅰ)(X,Y)的边缘概率密度fX(χ),fY(Y); (Ⅱ)Z=2X-Y的概率密度fZ(Z); (Ⅲ)
(05年)设二维随机变量(X,Y)的概率密度为 求:(Ⅰ)(X,Y)的边缘概率密度fX(χ),fY(Y); (Ⅱ)Z=2X-Y的概率密度fZ(Z); (Ⅲ)
admin
2019-05-11
41
问题
(05年)设二维随机变量(X,Y)的概率密度为
求:(Ⅰ)(X,Y)的边缘概率密度f
X
(χ),f
Y
(Y);
(Ⅱ)Z=2X-Y的概率密度f
Z
(Z);
(Ⅲ)
选项
答案
(Ⅰ)f
X
(χ)=∫
-∞
-∞
f(χ,y)dy 当χ≤0或χ≥1时,fχ(χ)=0; 当0<χ<1时,f
X
(χ)=∫
0
2χ
1dy=2χ. 故f
x
(χ)=[*] 同理,f
Y
(y)=∫
-∞
+∞
f(χ,y)dχ 当y≤0或y≥2时,f
Y
(y)=0; 当0<y<2时,f
Y
(y)=[*] 故f
Y
(y)=[*] 积分的讨论和定限可见图(a). (Ⅱ)Z的分布函数为: F
z
(z)=P{Z≤z}=P{2X-Y≤2)=[*]f(χ,y)dχdy 当[*]≥1即z≥2时,F
z
(z)=1,∴f
z
(z)=F′
z
(z)=0(参见图(b)) 当[*]<0即z<0时,F
z
(z)=0,∴f
z
(z)=F′
z
(z)=0(参见图(c)) 当0≤[*]<1即0≤z<2时, [*] ∴f
z
(z)=F′
z
(z)=1-[*](参见图(d)). 故f
z
(z)=[*] [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/nBJ4777K
0
考研数学三
相关试题推荐
设X~U(0,2),Y=X2,求Y的概率密度函数.
设f(x)在[0,1]上可导,f(0)=0,|f’(x)|≤|f(x)|.证明:f(x)≡0,x∈[0,1].
设F(x)为f(x)的原函数,且当x≥0时,f(x)F(x)=,又F(0)=1,F(x)>0,求f(x).
设f(x)在区间[a,b]上满足a≤f(x)≤b,且有|f’(x)|≤q<1,令un=f(un-1)(n=1,2,…),u0∈[a,b],证明:级数(un+1-un)绝对收敛.
确定常数a,b,c,使得=c.
设y=y(x)是一向上凸的连续曲线,其上任意一点(x,y)处的曲率为,又此曲线上的点(0,1)处的切线方程为y=x+1,求该曲线方程,并求函数y(x)的极值.
设点A(1,0,0),B(0,1,1),线段AB绕x轴一周所得旋转曲面为S.(1)求旋转曲面的方程;(2)求曲面S介于平面z=0与z=1之间的体积.
设f(x)∈C[a,b],在(a,b)内二阶可导,且f’’(x)≥0,φ(x)是区间[a,b]上的非负连续函数,且∫abφ(x)dx=1.证明:∫abf(x)φ(x)dx≥f[∫abxφ(x)dx].
设A,B是两个随机事件,P(A|B)=0.4,P(B|A)=0.4,=0.7,则P(A+B)=______.
(2008年)设f(x)是周期为2的连续函数。(I)证明对任意实数t,有∫tt+2f(x)dx=∫02f(x)dx;(Ⅱ)证明G(x)=∫0x[2f(t)一∫tt+2f(s)ds]dt是周期为2的周期函数。
随机试题
EveryyearjustafterChristmastheJanuarySalesstart.Alltheshopsreducetheirpricesandfortwoweeks,theyarefullofp
A、胆石症B、急性胰腺炎C、十二指肠溃疡D、输尿管结石E、脾破裂最常致出血性休克的是()
对自身免疫性溶血性贫血患者输血,应首选
对作业人员的安全生产教育培训包括( )。
个人经营贷款的合作机构主要是()
在满族婚俗中。男家近亲女眷前往女家,送给未来新娘一些珠宝钗环等首饰,并为其带上,这些在满族的婚俗中叫()。
【2015河北石家庄】针对如何对待自己做过的数学题,王老师引发并组织学生进行讨论,最后同学们决定每个人都建立一个数学题记录本,做题不顺畅、掌握不牢固的题用黑笔写到笔记本上,完全不会或者做错的题用红笔记到笔记本上。分析教师这样引导学生的目的,阐述用
在班级管理中,学生不仅是被管理的对象,也是管理的主体。()
某海滨派出所8、9月间经常接到外地游客报警,海边露天浴场多次发生扒窃案件,有小偷趁游客下海游泳时偷窃其随身携带的贵重物品。派出所决定加强海滨浴场的治安防范,其不恰当的做法是:
自1901年起,诺贝尔文学奖每年一次为在文学领域做出杰出贡献的人们颁发奖项,温斯顿·丘吉尔在1953年获取得此殊荣,其后一年则由海明威获得。
最新回复
(
0
)