首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α1,α2,…,αs均为n维向量,下列结论不正确的是
设α1,α2,…,αs均为n维向量,下列结论不正确的是
admin
2020-03-01
69
问题
设α
1
,α
2
,…,α
s
均为n维向量,下列结论不正确的是
选项
A、若对于任意一组不全为零的数k
1
,k
2
,…,k
s
,都有k
1
α
1
+k
2
α
2
+…+k
s
α
s
≠0,则α
1
,α
2
,…,α
s
线性无关.
B、若α
1
,α
2
,…,α
s
线性相关,则对于任意一组不全为零的数k
1
,k
2
,…,k
s
,都有k
1
α
1
+ k
2
α
2
+…+ k
s
α
s
=0.
C、α
1
,α
2
,…,α
s
线性无关的充分必要条件是此向量组的秩为s.
D、α
1
,α
2
,…,α
s
线性无关的必要条件是其中任意两个向量线性无关.
答案
B
解析
反例:向量组α
1
=(1,1),α
2
=(0,0)线性相关,但对于不全为零的常数k
1
=1,k
2
=2,却有k
1
α
1
+k
2
α
2
≠0.故(B)不对.
转载请注明原文地址:https://kaotiyun.com/show/nCA4777K
0
考研数学二
相关试题推荐
设f(χ)在χ=0处二阶可导,又I==1.求f(0),f′(0),f〞(0).
设A是n阶正定矩阵,证明|A+2E|>2n.
设A是n阶矩阵,满足(A-aE)(A-bE)=0,其中数a≠b.证明:r(A-aE)+r(A-bE)=n.
确定常数a,b,c,使得
设非齐次线性方程组Ax=b的系数矩阵的秩为r,η1,…ηn—r+1是它的n一r+1个线性无关的解。试证它的任一解可表示为x=k1η1+…+kn—r+1ηn—r+1,其中k1+…+kn—r+1=1。
设有微分方程y’-2y=φ(x),其中φ(x)=,在(-∞,+∞)求连续函数y(x),使其在(-∞,1)及(1,+∞)内都满足所给的方程,且满足条件y(0)=0.
设A=①计算行列式|A|.②实数a为什么值时方程组AX=β有无穷多解?在此时求通解.
求函数在区间[e,e2]上的最大值.
(12年)设an>0(n=1,2,…),Sn=a1+a2+…+an,则数列{Sn}有界是数列{an}收敛的
数列xn==_________。
随机试题
SomestudentsattheOpenUniversityleftschool20yearsago.Othersare【C1】______butallmustbeatleast21yearsold.Thisi
手三阴经可以共同主治
女,45岁,近一年来盗汗、心悸、易怒,食量增加。检查:突眼,心率110/分,血压126/84mmHg,甲状腺弥漫性肿大Ⅲ度,心律齐、无杂音,举手颤动明显。查血T3、T4高于正常值。诊为原发性甲亢,经抗甲状腺药物治疗后复发,拟行甲状腺双侧次全切除术。若术
A.心与肺B.心与脾C.肝与肾D.肺与肝E.心与肝脏与脏之间主要表现为气机升降关系的两脏是
旅游安全事故主要包括()。
产生重力性休克的主要原因是()
学校教育始于()时期。(潍坊寿光)
(1)由题设,[*]
InAmericaalone,tippingisnowa$16billion-a-yearindustry.Arecentpollshowedthat40%ofAmericans【C1】______thepractice
在Windows2003Server中启用配置SNMP服务时,必须以()身份登录才能完成SNMP服务的配置功能。
最新回复
(
0
)