首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设非齐次线性方程组Ax=b的系数矩阵的秩为r,η1,…ηn—r+1是它的n一r+1个线性无关的解。试证它的任一解可表示为x=k1η1+…+kn—r+1ηn—r+1,其中k1+…+kn—r+1=1。
设非齐次线性方程组Ax=b的系数矩阵的秩为r,η1,…ηn—r+1是它的n一r+1个线性无关的解。试证它的任一解可表示为x=k1η1+…+kn—r+1ηn—r+1,其中k1+…+kn—r+1=1。
admin
2019-02-23
49
问题
设非齐次线性方程组Ax=b的系数矩阵的秩为r,η
1
,…η
n—r+1
是它的n一r+1个线性无关的解。试证它的任一解可表示为x=k
1
η
1
+…+k
n—r+1
η
n—r+1
,其中k
1
+…+k
n—r+1
=1。
选项
答案
设x为Ax=b的任一解,由题设知η
1
,η
2
,…,η
n—r+1
线性无关且均为Ax=b的解。 取ξ
1
=η
1
一η
2
,ξ
2
=η
2
一η
1
,…,ξ
n—r
=η
n—r+1
一η
1
,根据线性方程组解的结构,它们均为对应齐次方程组Ax=0的解。 下面用反证法证明。 设ξ
1
,ξ
2
,…,ξ
n—r
线性相关,则存在不全为零的数l
1
,l
2
,…,l
n—r
,使得 l
1
ξ
1
+l
2
ξ
2
+…+l
n—r
ξ
n—r
=0, 即 l
1
(η
2
一η
1
)+l
2
(η
3
一η
2
)+…+l
n—r
(η
n—r+1
一η
1
)=0, 即 一(l
1
+l
2
+…+l
n—r
)η
1
+l
1
η
2
+l
2
η
3
+…+l
n—r
η
n—r+1
=0。 由η
1
,η
2
,…,η
n—r+1
线性无关知 一(l
1
+l
2
+…+l
n—r
)=l
1
=l
2
=…=l
n—r
=0, 这与l
1
,l
2
,…,l
n—r
不全为零矛盾,故假设不成立。因此ξ
1
,ξ
2
,…,ξ
n—r
线性无关,是Ax=0的基础解系。 由于x,η
1
均为Ax=b的解,所以x一η
1
为Ax=0的解,因此x一η
1
可由ξ
1
,ξ
2
,…,ξ
n—r
线性表示,设 x一η
1
=k
2
ξ
1
+k
3
ξ
2
+…+k
n—r+1
ξ
n—r
=k
2
(η
2
一η
1
)+k
3
(η
3
一η
1
)+…+k
n—r+1
(η
n—r+1
一η
1
), 则 x=η
1
(1一k
2
一k
3
一…一k
n—r+1
)+k
2
η
2
+k
3
η
3
+…+k
n—r+1
η
n—r+1
, 令k
1
=1一k
2
一k
3
一…一k
n—t+1
,则k
1
+k
2
+k
3
+…+k
n—r+1
=1,从而x=k
1
η
1
+k
2
η
2
+…+k
n—r+1
η
n—r+1
恒成立。
解析
转载请注明原文地址:https://kaotiyun.com/show/aij4777K
0
考研数学二
相关试题推荐
f(sinx)=cos2x+3x+2,则f’(x)=________.
已知f(x)在[0,2]上二阶连续可微,f(1)=0,证明:
[*]
已知α=是可逆矩阵A=的伴随矩阵A*的特征向量,特征值λ.求a,b,λ.
设f(χ)为连续函数,I=tf(tχ)dχ,其中t>0,s>0,则I的值
设矩阵三阶矩阵B满足ABA*=E—BA一1,试计算行列式|B|。
计算行列式
微分方程(y+x3)dx一2xdy=0满足y|x=1=的特解为________.
设f(χ)=2lnχ,f[φ(χ)=ln(1-lnχ),求φ(z)及其定义域.
随机试题
在Word文档编辑中,插入页码的方法有_______。
口服铁剂治疗后,首先升高的指标是
革兰染色阳性细菌脓毒症主要致病菌是
有催吐副作用,量不宜过大的是()。
()应每季度进行一次项目部实名制管理检查,并对检查情况进行打分,年底进行综合评定。
对项目规模评估的方法包括()。
按照咨询的规模划分,心理咨询可以分为()。
应用拉格朗日中值定理证明不等式:,其中0<m<n。
某人行为主动性比较差,但自制力很强,不怕困难,忍耐力高,表现出内刚外柔,其气质属于()。
"Cool"isawordwithmanymeanings.Itstraditionalmeaningisusedto【C1】______atemperaturethatisfairlycool.Astheworl
最新回复
(
0
)