首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α=[a1,a2,…,an]T≠0,A=ααT,求可逆矩阵P使P-1AP=A.
设α=[a1,a2,…,an]T≠0,A=ααT,求可逆矩阵P使P-1AP=A.
admin
2019-02-23
61
问题
设α=[a
1
,a
2
,…,a
n
]
T
≠0,A=αα
T
,求可逆矩阵P使P
-1
AP=A.
选项
答案
先求A的特征值. 方法一 利用特征值的定义. 设A的任一特征值为λ,对应于λ的特征向量为ξ,则 Aξ=αα
T
ξ=λξ. ① 若α
T
ξ=0,则λξ=0,ξ≠0,故λ=0; 若α
T
ξ≠0,①式两端左边乘α
T
,则 α
T
αα
T
ξ=(α
T
α)α
T
ξ=λ(α
T
ξ). 因α
T
ξ≠0,故[*] 方法二 利用[*]及特征值定义. ①式两端左边乘A,得 [*] 方法三 利用[*]及特征方程|λE-A|=0. 因[*]两边取行列式 [*] 得A的特征值λ=0或[*] 方法四 直接用A的特征方程 [*] 得A的特征值为[*]λ=0(n-1重根). 再求A的对应于λ的特征向量. 方法一 当λ=0时 [*] 即解方程 a
1
x
1
+a
2
x
2
+…+a
n
x
n
=0, 得特征向量为(设a
1
≠0). ξ
1
=[a
2
,一a
1
,0,…,0]
T
,ξ
2
=[a
3
,0,一a
1
,…,0]
T
,…,ξ
n-1
=[a
n
,0,0,…,一a
1
]
T
. 当[*]时 [*] 由观察知ξ
n
=[a
1
,a
2
,…,a
n
]
T
. 方法二 因为A=αα
T
,λ=0时,(λE-A)X=一αα
T
X=0,因为满足a
T
X=0的X必满足αα
T
X=0,故λ=0时,对应的特征方程是a
1
x
1
+a
2
x
2
+…+a
n
x
n
=0.对应λ=0的n一1个特征向量为 ξ
1
=[a
2
,一a
1
,0,…,0]
T
,ξ
2
=[a
3
,0,一a
1
,…,0]
T
,…,ξ
n-1
=[a
n
,0,…,一a
1
]
T
. [*]时,对矩阵λE一A=α
T
αE一αα
T
两端右边乘α,得 (λE-A)α=(α
T
αE-αα
T
)α=(α
T
α)α-α(α
T
α)=0, 故知α=[a
1
,a
2
,…,a
n
]
T
即是所求ξ
n
. 最后由ξ
1
ξ
2
,…,ξ
n
,得可逆矩阵P,即 [*] 且 [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/Lij4777K
0
考研数学二
相关试题推荐
确定常数a,b,c的值,使得当x→0时,ex(1+bx+cx2)=1+ax+o(x3)
设函数y=y(x)由方程组
已知α=(1,1,-1)T是A=的特征向量,求a,b和α的特征值λ.
将长为口的一段铁丝截成两段,用一段围成正方形,另一段围成圆,为使两段面积之和最小,问两段铁丝各长多少?
求方程y〞+2my′+n2y=0的通解;又设y=y(χ)是满足初始条件y(0)=a,y′(0)=b的特解,求∫0+∞y(χ)dχ,其中,m>n>0,a,b为常数.
积分∫aa+2πcosχln(2+cosχ)dχ的值
二次型f(χ1,χ2,χ3)=χ12+aχ22+χ32+2χ1χ2+2χ1χ3+2χ2χ3的正惯性指数为2,a应满足什么条件?
设函数f(x)在[0,π]上连续,且∫0πf(x)dx=∫0πf(x)cosdx=0。试证明在(0,π)内至少存在两个不同的点ξ1,ξ2,使f(ξ1)=f(ξ2)=0。
设向量组α1=(a,3,1)T,α2=(2,b,3)T,α3=(1,2,1)T,α4=(2,3,1)T的秩为2,求a,b的值及该向量组的一个极大线性无关组,并把其余向量用此极大线性无关组线性表示.
设函数f(x)=x∈[0,1].定义函数列:f1(x)=f(x),f2(x)=f(f1(x)),…,fn(x)=f(fn一1(x)),…记Sn是由曲线y=fn(x),直线x=1及x轴所围成平面图形的面积,求极限Sn.
随机试题
驾驶机动车遇到这种情况要靠右侧停车等待。
当旧的经济关系日益腐朽,新的经济关系日益形成时,旧的道德体系也必将为新的道德体系所代替。人们的道德水平必然随着社会实践由低级到高级的发展而不断进步。这说明【】
日本血吸虫:中华支睾吸虫:
女性,26岁。间歇性牙龈出血伴月经过多1年。体检:双下肢可见散在出血点及紫癜,肝脾不大。血红蛋白120g/L,红细胞4.6×1012/L,白细胞5.5×109/L,分类正常,血小板25×109/L。特发性血小板减少性紫癜诊断要点不包括
十二指肠癌较罕见发生在哪段?()。
根据《中华人民共和国水污染防治法》对饮用水水源保护区的有关规定,下列说法中正确的是()。
我国地貌景观可分为花岗岩山地、岩溶山水、丹霞地貌等等,下列哪一组景观是上述三种地貌景观的典型代表()。
一线贯通是公文中显示主旨的方法之一,指的是主旨分散于一篇文章各个部分的小标题、小观点或者是条旨句、段旨句中,起一个穿针引线、提纲挈领的作用。()
[*]
HereIwanttotrytogiveyouananswertothequestion:whatpersonalqualitiesare【C1】______inateacher?Probablynotwope
最新回复
(
0
)