首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α=[a1,a2,…,an]T≠0,A=ααT,求可逆矩阵P使P-1AP=A.
设α=[a1,a2,…,an]T≠0,A=ααT,求可逆矩阵P使P-1AP=A.
admin
2019-02-23
56
问题
设α=[a
1
,a
2
,…,a
n
]
T
≠0,A=αα
T
,求可逆矩阵P使P
-1
AP=A.
选项
答案
先求A的特征值. 方法一 利用特征值的定义. 设A的任一特征值为λ,对应于λ的特征向量为ξ,则 Aξ=αα
T
ξ=λξ. ① 若α
T
ξ=0,则λξ=0,ξ≠0,故λ=0; 若α
T
ξ≠0,①式两端左边乘α
T
,则 α
T
αα
T
ξ=(α
T
α)α
T
ξ=λ(α
T
ξ). 因α
T
ξ≠0,故[*] 方法二 利用[*]及特征值定义. ①式两端左边乘A,得 [*] 方法三 利用[*]及特征方程|λE-A|=0. 因[*]两边取行列式 [*] 得A的特征值λ=0或[*] 方法四 直接用A的特征方程 [*] 得A的特征值为[*]λ=0(n-1重根). 再求A的对应于λ的特征向量. 方法一 当λ=0时 [*] 即解方程 a
1
x
1
+a
2
x
2
+…+a
n
x
n
=0, 得特征向量为(设a
1
≠0). ξ
1
=[a
2
,一a
1
,0,…,0]
T
,ξ
2
=[a
3
,0,一a
1
,…,0]
T
,…,ξ
n-1
=[a
n
,0,0,…,一a
1
]
T
. 当[*]时 [*] 由观察知ξ
n
=[a
1
,a
2
,…,a
n
]
T
. 方法二 因为A=αα
T
,λ=0时,(λE-A)X=一αα
T
X=0,因为满足a
T
X=0的X必满足αα
T
X=0,故λ=0时,对应的特征方程是a
1
x
1
+a
2
x
2
+…+a
n
x
n
=0.对应λ=0的n一1个特征向量为 ξ
1
=[a
2
,一a
1
,0,…,0]
T
,ξ
2
=[a
3
,0,一a
1
,…,0]
T
,…,ξ
n-1
=[a
n
,0,…,一a
1
]
T
. [*]时,对矩阵λE一A=α
T
αE一αα
T
两端右边乘α,得 (λE-A)α=(α
T
αE-αα
T
)α=(α
T
α)α-α(α
T
α)=0, 故知α=[a
1
,a
2
,…,a
n
]
T
即是所求ξ
n
. 最后由ξ
1
ξ
2
,…,ξ
n
,得可逆矩阵P,即 [*] 且 [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/Lij4777K
0
考研数学二
相关试题推荐
=______
已知矩阵A=只有两个线性无关的特征向量,则A的三个特征值是________,a=________
设f(x)在区间[0,1]上可导,f(1)=.证明:存在ξ∈(0,1),使得2f(ξ)+ξf’(ξ)=0.
设f(x)为奇函数,且f’(1)=2,则=_______
设f(x)在(-∞,+∞)上是导数连续的有界函数,|f(x)-f’(x)|≤1,证明:|f(x)|≤1.
设u=f(x+y,x2+y2),其中f二阶连续可偏导,求
设函数f(x)在[0,a]上连续,在(0,a)内二阶可导,且f(0)=0,f’’(x)<0,则=在(0,a]上().
设D由抛物线y=χ2,y=4χ2及直线y=1所围成.用先χ后y的顺序,将I=f(χ,y)dχdy,化成累次积分.
函数与直线x=0,x=t(t>0)及y=0围成一曲边梯形。该曲边梯形绕x轴旋转一周得一旋转体,其体积为V(t),侧面积为S(t),在x=t处的底面积为F(t)。(I)求的值;(Ⅱ)计算极限
假设函数f(x)和g(x)在[a,b]上存在二阶导数,并且g’’(x)≠0,f(a)=f(b)=g(a)=g(b)=0,试证:在开区间(a,b)内至少存在一点ξ,。
随机试题
《周易·系辞上》里说:“二人同心,其利断金。”这句话给我们的启示是()。
标明净含量为454g的罐头,允许单罐短缺量为()。
肥胖病的病位在
球形电容器的内半径R1=5cm,外半径R2=10cm。若介质的电导率γ=10-10S/m,则球形电容器的漏电导为()。
具有工期较短、资源供应特别集中、现场组织管理复杂、不强调分工协作等特点的施工过程组织方法是()。
关于人类探月,下列说法不正确的是()。
试述反应速度训练常用的方法与手段。
用图表(如直方图、曲线图等)形式表示数据表有很多优点,但这些优点中不包括______。
(68)referstothepartsofthecomputerthatyoucan,seeandtouch.Itisusedforthepurposeof(69).
HowtoapproachListeningTestPartOne•InthispartoftheListeningTestyoulistentoamonologue,e.g.apresentation.•B
最新回复
(
0
)