首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(1)设α1,α3,β1,β2均为3维列向量,且α1,α3线性无关,β1,β2线性无关,证明存在非零向量ξ,使得ξ既可由α1,α3线性表示,又可由β1,β2线性表示; (2)当时,求所有的既可由α1,α2线性表示,又可由β1,β2线性表示的向量ξ.
(1)设α1,α3,β1,β2均为3维列向量,且α1,α3线性无关,β1,β2线性无关,证明存在非零向量ξ,使得ξ既可由α1,α3线性表示,又可由β1,β2线性表示; (2)当时,求所有的既可由α1,α2线性表示,又可由β1,β2线性表示的向量ξ.
admin
2019-12-26
84
问题
(1)设α
1
,α
3
,β
1
,β
2
均为3维列向量,且α
1
,α
3
线性无关,β
1
,β
2
线性无关,证明存在非零向量ξ,使得ξ既可由α
1
,α
3
线性表示,又可由β
1
,β
2
线性表示;
(2)当
时,求所有的既可由α
1
,α
2
线性表示,又可由β
1
,β
2
线性表示的向量ξ.
选项
答案
(1)4个3维向量α
1
,α
3
,β
1
,β
2
必线性相关,故存在不全为0的数k
1
,k
2
,λ
1
,λ
2
,使得 k
1
α
1
+k
2
α
3
+λ
1
β
1
+λ
2
β
2
=0,即k
1
α
1
+k
2
α
3
=-λ
1
β
1
-λ
2
β
2
. 其中k
1
,k
2
不全为零(否则,由-λ
1
β
1
-λ
2
β
2
=0[*]λ
1
=λ
2
=0,这与k
1
,k
2
,λ
1
,λ
2
不全为0矛盾). 令ξ=k
1
α
1
+k
2
α
3
=-λ
1
β
1
-λ
2
β
2
≠0.则ξ即为所求. (2)由(1)知,ξ=k
1
α
1
+k
2
α
3
=-λ
1
β
1
-λ
2
β
2
,得k
1
α
1
+k
2
α
3
+λ
1
β
1
+λ
2
β
2
=0,即 [*] 解方程组得方程组的通解为[*]其中k为任意常数.故所求的向量ξ=k
1
α
1
+k
2
α
3
=-λ
1
β
1
-λ
2
β
2
=[*]c为任意常数.
解析
转载请注明原文地址:https://kaotiyun.com/show/nGD4777K
0
考研数学三
相关试题推荐
求常数a,使得向量组α1=(1,1,a)T,α2=(1,a,1)T,α3=(a,1,1)T可由向量组β1=(1,1,a)T,β2=(一2,a,4)T,β3=(一2,a,a)T线性表示,但是β1,β2,β3不可用α1,α2,α3线性表示.
设α,β都是3维列向量,A=ααT+ββT.证明(1)r(A)≤2.(2)如果α,β线性相关,则r(A)<2.
设A是m×n矩阵,B是n×m矩阵,则()
设A为n阶正交矩阵,α和β都是n维实向量,证明:(I)内积(α,β)=(Aα,Aβ)).(2)长度‖α‖=‖Aα‖.
证明=(n+1)an.
矩阵A=的三个特征值分别为________
证明:曲率恒为常数的曲线是圆或直线.
微分方程y2dx+(x2一xy)dy=0的通解为__________.
设A是一个n阶矩阵,且A2-2A-8E=O,则r(4E-A)+r(2E+A)=__________
设且f(x)处处可导,求f[g(x)]的导数.
随机试题
网络广告与传统广告相比而言的优势包括【】
TheBestPlacetoBeBornintheWorldLastyear,theEIU(EconomistIntelligenceUnit),asistercompanyoftheEconomist,
患者,男,32岁。交通事故致头面部复合伤。伤后昏迷45分钟,造成吸人性窒息,正确的处理方法是
结核菌素(PPD)试验常用的剂量是
水利工程施工招标资格审查应主要审查潜在投标人或者投标人是否符合()等。
在商业银行管理中,安全性原则的基本含义是在放款和投资等业务经营过程中( )。
在河南,长久以来,还存在着一个曲艺的盛会——马街书会,自元代已经成俗,至今不衰。它让无数曲艺艺人为之魂牵梦绕。马街书会在河南()
案件:侦查:警察
设f(x)在(一∞,+∞)上二阶导数连续,f(0)=01)确定a使g(x)在(一∞,+∞)上连续;2)证明对以上确定的a,g(x)在(一∞,+∞)上有连续一阶导数.
目前,比较流行的UNIX系统属于哪一类操作系统?
最新回复
(
0
)