首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(1)设α1,α3,β1,β2均为3维列向量,且α1,α3线性无关,β1,β2线性无关,证明存在非零向量ξ,使得ξ既可由α1,α3线性表示,又可由β1,β2线性表示; (2)当时,求所有的既可由α1,α2线性表示,又可由β1,β2线性表示的向量ξ.
(1)设α1,α3,β1,β2均为3维列向量,且α1,α3线性无关,β1,β2线性无关,证明存在非零向量ξ,使得ξ既可由α1,α3线性表示,又可由β1,β2线性表示; (2)当时,求所有的既可由α1,α2线性表示,又可由β1,β2线性表示的向量ξ.
admin
2019-12-26
53
问题
(1)设α
1
,α
3
,β
1
,β
2
均为3维列向量,且α
1
,α
3
线性无关,β
1
,β
2
线性无关,证明存在非零向量ξ,使得ξ既可由α
1
,α
3
线性表示,又可由β
1
,β
2
线性表示;
(2)当
时,求所有的既可由α
1
,α
2
线性表示,又可由β
1
,β
2
线性表示的向量ξ.
选项
答案
(1)4个3维向量α
1
,α
3
,β
1
,β
2
必线性相关,故存在不全为0的数k
1
,k
2
,λ
1
,λ
2
,使得 k
1
α
1
+k
2
α
3
+λ
1
β
1
+λ
2
β
2
=0,即k
1
α
1
+k
2
α
3
=-λ
1
β
1
-λ
2
β
2
. 其中k
1
,k
2
不全为零(否则,由-λ
1
β
1
-λ
2
β
2
=0[*]λ
1
=λ
2
=0,这与k
1
,k
2
,λ
1
,λ
2
不全为0矛盾). 令ξ=k
1
α
1
+k
2
α
3
=-λ
1
β
1
-λ
2
β
2
≠0.则ξ即为所求. (2)由(1)知,ξ=k
1
α
1
+k
2
α
3
=-λ
1
β
1
-λ
2
β
2
,得k
1
α
1
+k
2
α
3
+λ
1
β
1
+λ
2
β
2
=0,即 [*] 解方程组得方程组的通解为[*]其中k为任意常数.故所求的向量ξ=k
1
α
1
+k
2
α
3
=-λ
1
β
1
-λ
2
β
2
=[*]c为任意常数.
解析
转载请注明原文地址:https://kaotiyun.com/show/nGD4777K
0
考研数学三
相关试题推荐
3阶矩阵,已知r(AB)小于r(A)和r(B),求a,b和r(AB).
设电子管寿命X的概率密度为若一台收音机上装有三个这种电子管,求:Y的分布函数.
设f(x,y)=(Ⅰ)求;(Ⅱ)讨论f(x,y)在点(0,0)处的可微性,若可微并求af|(0,0).
设y(x)是方程y(4)一y"=0的解,且当x→0时,y(x)是x的3阶无穷小,求y(x).
设函数f(x)在x=2的某邻域内可导,且f’(x)=ef(x),f(2)=1,则f"’(2)=________。
求曲线y=cosx()与x轴围成的区域绕x轴、y轴形成的几何体体积.
已知幂级数anxn在x=1处条件收敛,则幂级数an(x一1)n的收敛半径为________。
求常数a与b的值,使f(x)在(一∞,+∞)上处处连续。
设且f(x)处处可导,求f[g(x)]的导数.
随机试题
热电阻温度计显示仪表指示无穷大可能原因是热电阻短路。
1956年至1957年上半年反映中国共产党人早期探索积极进展的事件有()
调整烧伤病人补液指标主要有()
每40cm2肌肉上检出囊尾蚴5个,该肉应
A.补肾安胎饮B.胎元饮C.保阴煎D.加味圣愈汤E.桃红四物汤跌仆损伤而致的早产治疗方剂为
患者,男,68岁。呕吐4天入院,诊断粘连性肠梗阻,肠绞窄可能,拟急诊剖腹探查,最需要完成的检查是
以下关于质量控制说法正确的是()。
在公共场合演讲,有的人长篇大论,滔滔不绝;有的人则把自己的意思浓缩成一句话,而这句话犹如一粒沉甸甸的石子,在听众平静的心湖里激起层层波浪,让人称道与回味。1936年10月19日,在上海各界人士公祭鲁迅先生的大会上,我国著名新闻记者、政治家、社会活动家邹韬奋
Readthetextbelowaboutcommunicatingingroups.Inmostofthelines41-52thereisoneextraword.Itiseithergrammaticall
AdelegationofAmericanofficialsappearedbeforeaninternationallegalpanelon(36)toarguethatinitsfight(37),theUn
最新回复
(
0
)