设f(x)在[0,+∞)内可导且f(0)=1,f’(x)<f(x)(x>0).证明:f(x)<ex(x>0).

admin2019-07-22  31

问题 设f(x)在[0,+∞)内可导且f(0)=1,f’(x)<f(x)(x>0).证明:f(x)<ex(x>0).

选项

答案令φ(x)=e-x-xf(x),则φ(x)在[0,+∞)内可导, 又φ(0)=1,φ’(x)=e-x[f’(x)-f(x)]<0(x>0),所以当x>0时,φ(x)<φ(0)=1, 所以有f(x)<ex(x>0).

解析
转载请注明原文地址:https://kaotiyun.com/show/nGN4777K
0

最新回复(0)