首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[1,+∞)内可导,f’(x)<0且f(x)=a>0,令an=f(k)-∫1nf(x)dx.证明:{an}收敛且0≤an≤f(1).
设f(x)在[1,+∞)内可导,f’(x)<0且f(x)=a>0,令an=f(k)-∫1nf(x)dx.证明:{an}收敛且0≤an≤f(1).
admin
2018-05-22
31
问题
设f(x)在[1,+∞)内可导,f’(x)<0且
f(x)=a>0,令a
n
=
f(k)-∫
1
n
f(x)dx.证明:{a
n
}收敛且0≤
a
n
≤f(1).
选项
答案
因为f’(x)<0,所以f(x)单调减少. 又因为a
n+1
-a
n
=f(n+1)-∫
n
n+1
f(x)dx=f(n+1)-f(ξ)≤0(ξ∈[n,n+1]), 所以{a
n
}单调减少. 因为a
n
=[*]∫
k
k+1
[f(k)-f(x)]dx+f(n),而∫
k
k+1
[f(k)-f(x)]dx≥0(k=1,2,…,n-1) 且[*]f(x)=a>0,所以存在X>0,当x>X时,f(x)>0. 由f(x)单调递减得f(x)>0(x∈[-1,+∞)),故a
n
≥f(n)>0,所以[*]a
n
存在. 由a
n
=f(1)+[f(2)-∫
1
2
f(x)dx]+…+[f(n)-∫
n-1
n
(x)dx], 而f(k)-∫
k-1
k
f(x)dx≤0(k=2,3,…,n),所以a
n
≤f(1),从而0≤[*]a
n
≤f(1).
解析
转载请注明原文地址:https://kaotiyun.com/show/zvk4777K
0
考研数学二
相关试题推荐
(2002年试题,四)设求函数的表达式
(1998年试题,二)设函数f(x)在x=a的某个领域内连续,且f(x)为其极大值,则存在δ>0,当x∈(a一δ,a+δ)时,必有().
(2011年试题,三)①证明:对任意的正整数n,都有成立②设an=,证明数列{an}收敛.
设L是一条平面曲线,其上任意一点P(x,y)(x>0)到坐标原点的距离恒等于该点处的切线在y轴上的截距,且L经过点.(1)试求曲线L的方程;(2)求L位于第一象限部分的一条切线,使该切线与L以及两坐标轴所围图形的面积最小.
函数的可去间断点的个数为
就k的不同取值情况,确定方程在开区间内根的个数,并证明你的结论.
曲线的渐近线方程为_______.
求二重积分的值,其中D是由直线y=x,Y=-1及x=1围成的平面区域.
设有一容器由平面z=0,z=1及介于它们之间的曲面S所围成.过z轴上点(0,0,z)(0≤z≤1)作垂直于z轴的平面与该立体相截得水平截面D(z),它是半径的圆面.若以每秒v0体积单位的均匀速度往该容器注水,并假设开始时容器是空的.写出注水过程中t时刻
讨论,在点(0,0)处的连续性、可偏导性及可微性.
随机试题
Astheeconomycontinuesto【C1】________,agrowingnumberofemployersareonceagainhiring.What’smore,thegainsaren’tlimi
主权国家必备的要素有哪些?
营气的功能有
关于皮质醇增多症的说法正确的有()
提插补泻手法中的泻法是
项目申请报告不包括市场前景、资金来源、()等不涉及政府公权力的“纯内部”条件。
“桂林山水甲天下”体现了人类的哪种社会性情感()。
A、 B、 C、 D、 C
Thepassagemainlytellsus________."CertainothercombinationsareemployedtoindicatesuchthingsasEndorMessageofErr
Todayourknowledgeoffoodandwhatitdoesforourbodiesisfarmoreadvancedthanthatoftheoldtimes.Nowweknowaboutv
最新回复
(
0
)