首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[1,+∞)内可导,f’(x)<0且f(x)=a>0,令an=f(k)-∫1nf(x)dx.证明:{an}收敛且0≤an≤f(1).
设f(x)在[1,+∞)内可导,f’(x)<0且f(x)=a>0,令an=f(k)-∫1nf(x)dx.证明:{an}收敛且0≤an≤f(1).
admin
2018-05-22
39
问题
设f(x)在[1,+∞)内可导,f’(x)<0且
f(x)=a>0,令a
n
=
f(k)-∫
1
n
f(x)dx.证明:{a
n
}收敛且0≤
a
n
≤f(1).
选项
答案
因为f’(x)<0,所以f(x)单调减少. 又因为a
n+1
-a
n
=f(n+1)-∫
n
n+1
f(x)dx=f(n+1)-f(ξ)≤0(ξ∈[n,n+1]), 所以{a
n
}单调减少. 因为a
n
=[*]∫
k
k+1
[f(k)-f(x)]dx+f(n),而∫
k
k+1
[f(k)-f(x)]dx≥0(k=1,2,…,n-1) 且[*]f(x)=a>0,所以存在X>0,当x>X时,f(x)>0. 由f(x)单调递减得f(x)>0(x∈[-1,+∞)),故a
n
≥f(n)>0,所以[*]a
n
存在. 由a
n
=f(1)+[f(2)-∫
1
2
f(x)dx]+…+[f(n)-∫
n-1
n
(x)dx], 而f(k)-∫
k-1
k
f(x)dx≤0(k=2,3,…,n),所以a
n
≤f(1),从而0≤[*]a
n
≤f(1).
解析
转载请注明原文地址:https://kaotiyun.com/show/zvk4777K
0
考研数学二
相关试题推荐
(2012年试题,二)设。其中函数f(u)可微,则
(2010年试题,15)求函数的单调区间与极值.
(1999年试题,一)设函数y=y(x)由方程ln(x2+y)=x3y+sinx确定,则__________。
(2001年试题,一)设函数y=f(x)由方程e2x+y—cos(xy)=e—1所确定,则曲线),=f(x)在点(0,1)处的法线方程为_________.
(1997年试题,五)设曲线L的极坐标方程为r=r(θ),M(r,θ)为L上任一点,M0(2,0)为L上一定点.若极径OM0,OM与曲线L所围成的曲边扇形面积值等于L上M0,M两点间弧长值的一半,求曲线L的方程.
设函数,问a为何值时,f(x)在x=0处连续;n为何值时,x=0是f(x)的可去间断点?
已知3阶矩阵A的第一行是(abc),a,b,c不全为零,矩阵B=(k为常数),且AB=0,求线性方程组Ax=0的通解.
(1)证明拉格朗日拉值定理:若函数f(x)在[a,b]上连续,在(a,b)内可导,则存在ξ∈(a,b),使得f(b)-f(a)=f’(ξ)(b-a).(2)证明:若函数f(x)在x=0处连续,在(0,δ)(δ>0)内可导,且,则f’+(0)存在,且f’+
曲线的渐近线方程为_______.
设b>a>0,证明不等式
随机试题
解释什么是国际收支。
确诊血管相关性感染时,导管尖端培养结果为阳性的是
酮体包括
根据我国《刑事诉讼法》的规定,除法律特别规定的以外,公安机关负责对刑事案件的侦查、拘留、预审等。人民法院负责对刑事案件的审讯。人民检察院负责检察,检察机关直接受理的案件的侦查、提起公诉等,此外还负责:
优质结构工程质量控制资料包括土壤中氡浓度检测报告。()
某公司拟使用短期借款进行筹资。下列借款条件中,不会导致实际利率高于名义利率的是()。
下列有关注册会计师在临近审计结束时运用分析程序的说法中,错误的是()。(2017年)
到某一游览点后,若有个别旅游者希望不按规定的线路游览而要求自由游览或摄影时。若环境许可,导游人员可满足其要求。
(A)条件(1)充分,但条件(2)不充分。(B)条件(2)充分,但条件(1)不充分。(C)条件(1)和条件(2)单独都不充分,但条件(1)和条件(2)联合起来充分。(D)条件(1)充分,条件(2)也充分。(E)条件(1)和条件(2)单独都不充分,条
已知|a|=2,|b|=且a.b=2,则|a×b|=_____.
最新回复
(
0
)