首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(06年)设4维向量组α1=(1+a,1,1,1)T,α2=(2,2+a,2,2)T,α3=(3,3,3+a,3)T,α4=(4,4,4,4+a)T,问a为何值时,α1,α2,α3,α4线性相关?当α1,α2,α3,α4线性相关时,求其一个极大线性无关组,
(06年)设4维向量组α1=(1+a,1,1,1)T,α2=(2,2+a,2,2)T,α3=(3,3,3+a,3)T,α4=(4,4,4,4+a)T,问a为何值时,α1,α2,α3,α4线性相关?当α1,α2,α3,α4线性相关时,求其一个极大线性无关组,
admin
2017-05-26
41
问题
(06年)设4维向量组α
1
=(1+a,1,1,1)
T
,α
2
=(2,2+a,2,2)
T
,α
3
=(3,3,3+a,3)
T
,α
4
=(4,4,4,4+a)
T
,问a为何值时,α
1
,α
2
,α
3
,α
4
线性相关?当α
1
,α
2
,α
3
,α
4
线性相关时,求其一个极大线性无关组,并将其余向量用该极大线性无关组线性表出.
选项
答案
记A=(α
1
,α
2
,α
3
,α
4
),则 [*] 于是当a=0或a=-10时,α
1
,α
2
,α
3
,α
4
线性相关. 当a=0时,α
1
≠0,且α
2
,α
3
,α
4
均可由α
1
线性表出,故α
1
为α
1
,α
2
,α
3
,α
4
的一个极大线性无关组,且α
2
=2α
1
,α
3
=3α
1
,α
4
=4α
1
. 当a=-10时,对A施以初等行变换,有 [*] 由于β
2
,β
3
,β
4
为β
1
,β
2
,β
3
,β
4
的一个极大线性无关组,且β
1
=-β
2
-β
3
-β
4
,故α
2
,α
3
,α
4
为α
1
,α
2
,α
3
,α
4
的一个极大线性无关组,且α
1
=-α
2
-α
3
-α
4
.
解析
转载请注明原文地址:https://kaotiyun.com/show/nRH4777K
0
考研数学三
相关试题推荐
A、 B、 C、 D、 D
假设曲线l1:y=1-x2(0≤x≤1)与x轴,y轴所围成区域被曲线l2:y=ax2分为面积相等的两部分,其中a是大于零的常数,试确定口的值.
写出下列各试验的样本空间:(1)掷两枚骰子,分别观察其出现的点数;(2)观察一支股票某日的价格(收盘价);(3)一人射靶三次,观察其中靶次数;(4)一袋中装有10个同型号的零件,其中3个合格7个不合格,每次从中随意取
A、 B、 C、 D、 C
设z轴与重力的方向一致,求质量为m的质点从位置(x1,y1,z1)沿直线移到(x2,y2,z2)时重力所作的功.
设线性方程组x1+λx2+λx3+x4=0;2x1+x2+x3+2x4=0;3x1+(2+λ)x2+(4+μ)x3+4x4=0;已知(1,-1,1,-1)T是该方程组的一个解.试求:方程组满足x2=x3的全部解.
设线性方程组Ax=b有m个方程,n个未知数,则()正确.
曲线r=3cosθ,r=1+cosθ所围图形的公共部分面积A=_____.
假设X1,X2,…,Xn为来自总体X的简单随机样本,已知E(Xk)=ak(k=1,2,3,4),证明:当n充分大时,随机变量近似服从正态分布,并指出其分布参数.
计算二重积分其中D是由x2+y2=1的上半圆与x2+y2=2y的下半圆围成的区域.
随机试题
Opponentsofaffirmativeactionsaythebattleovertheuseofraceincollegeadmissionsishardlyover,despitetheSupremeCo
Solittle______aboutphysicsthatthelecturewascompletelybeyondme
地质大循环的特点是()
根据固定资产的年平均成本概念,下列表述中不正确的有()。
古德莱德认为课程的层次主要有()。
被日本视为“海上生命线”的是()海峡。
Courtsareoverflowingwithlawsuitsoverwhethercompanieshavemisclassified"employees"as"independentcontractors",resulti
关系模型有三类完整性约束:实体完整性、参照完整性和用户定义的完整性。定义主键实现的是哪一(些)类完整性?
下列关于数据库系统特点的叙述中,正确的一条是()。
Advertisingispaid,nonpersonalcommunicationthatisdesignedtocommunicateinacreativemanner,throughtheuseofmassor
最新回复
(
0
)