首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设3阶实对称矩阵A的特征值λ1=1,λ2=2,λ3=一2,且α1=(1,一1,1)T是A的属于λ1的一个特征向量.记B=A5一4A3+E,其中E为3阶单位矩阵. (I)验证α1是矩阵B的特征向量,并求B的全部特征值与特征向量; (Ⅱ)求矩阵
设3阶实对称矩阵A的特征值λ1=1,λ2=2,λ3=一2,且α1=(1,一1,1)T是A的属于λ1的一个特征向量.记B=A5一4A3+E,其中E为3阶单位矩阵. (I)验证α1是矩阵B的特征向量,并求B的全部特征值与特征向量; (Ⅱ)求矩阵
admin
2017-11-13
96
问题
设3阶实对称矩阵A的特征值λ
1
=1,λ
2
=2,λ
3
=一2,且α
1
=(1,一1,1)
T
是A的属于λ
1
的一个特征向量.记B=A
5
一4A
3
+E,其中E为3阶单位矩阵.
(I)验证α
1
是矩阵B的特征向量,并求B的全部特征值与特征向量;
(Ⅱ)求矩阵B.
选项
答案
(I)记矩阵A的属于特征值λ
i
的特征向量为α
i
(i=1,2,3),由特征值的定义与性质,有 A
k
α=λ
i
k
α
i
(i=1,2,3,k=1,2,…),于是有 Bα
1
=(A
5
一4A
3
+E)α
1
=(λ
1
5
—4λ
1
3
+1)α
1
=一2α
1
因α
1
≠0,故由定义知一2为B的一个特征值且α
1
为对应的一个特征向量.类似可得 Bα
2
=(λ
2
5
一4λ
2
3
+1)α
2
=α
2
Bα
3
=(λ
3
5
一4λ
3
3
+1)α
3
=α
3
因为A的全部特征值为λ
1
,λ
2
,λ
3
,所以B的全部特征值为λ
i
5
一4λ
i
3
+1(i=1,2,3),即B的全部特征值为一2,1,1. 因一2为B的单特征值,故B的属于特征值一2的全部特征向量为k
1
α
1
,其中k
1
是不为零的任意常数. 设x=(x
1
,x
2
,x
3
)
T
为B的属于特征值1的任一特征向量.因为A是实对称矩阵,所以B也是实对称矩阵.因为实对称矩阵属于不同特征值的特征向量正交,所以有(x
1
,x
2
,x
3
)α
1
=0,即 x
1
一x
2
+x
3
=0 解得该方程组的基础解系为 ξ
2
=(1,1,0)
T
,ξ
3
=(-1,0,1)
T
故B的属于特征值1的全部特征向量为k
2
ξ
3
+k
3
ξ
3
,其中k
2
,k
3
为不全为零的任意常数. (Ⅱ)由(I)知α
1
,ξ
2
,ξ
3
为B的3个线性无关的特征向量,令矩阵 [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/nVr4777K
0
考研数学一
相关试题推荐
[*]
甲、乙、丙厂生产产品所占的比重分别为60%,25%,15%,次品率分别为3%,5%,8%,求任取一件产品是次品的概率.
∫arcsinxarccosxdx
设α1,α2,β1,β2为三维列向量组,且α1,α2与β1,β2都线性无关.
求心形线r=a(1+cosθ)的全长,其中a>0是常数.
设二维随机变量(X,Y)的联合密度函数为判断随机变量X,Y是否相互独立;
设随机变量X1,X2,X3,X4独立同分布,且(i=1,2,3,4),求X=的概率分布.
设随机变量X满足|X|≤1,且,在{一1<X<1)发生的情况下,X在(一1,1)内任一子区间上的条件概率与该子区间长度成正比.求P(X<0).
甲、乙两人独立对同一目标进行射击,命中目标概率分别为60%和50%.甲、乙两人同时向目标射击,求目标被命中的概率;
以y=C1ex+ex(C2cosx+C3sinx)为特解的三阶常系数齐次线性微分方程为___________.
随机试题
溃疡性结肠炎与下列脏腑无关的是
下列关于借款费用暂停或停止资本化的相关表述中,正确的是()。
《物业管理条例》的法律责任的特点是()
一般情况下,初中生的思想品德的发展在科尔伯格的道德发展阶段论中位于()阶段。
《义务教育数学课程标准(2011年版)》中所说的“数学基本思想”主要指()、数学推理的思想和数学建模的思想.
树木的年轮不仅记录着树的年龄,而且指示着方向。年轮一般总是一面稀疏一面密集。那么,在中国北方平原上的树木,年轮密集的一面指向的是:
“深入浅出”这个成语中主要涉及的迁移类型是()
论述完善人权司法保障制度的措施。
数据库设计分为以下6个设计阶段:需求分析阶段、【】、逻辑设计阶段、物理设计阶段、实施阶段、运行和维护阶段。
Whatdoesthewomanmean?
最新回复
(
0
)