首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是3阶矩阵,满足 Aα1=一α1,Aα2=α1+2α2,Aα3=α1+3α2+α3, 其中α1=[0,1,1]T,α2=[1,0,1]T,α3=[1,1,0]T. 证明A相似于对角矩阵A,求A,并求可逆矩阵P,使得P-1AP=A.
设A是3阶矩阵,满足 Aα1=一α1,Aα2=α1+2α2,Aα3=α1+3α2+α3, 其中α1=[0,1,1]T,α2=[1,0,1]T,α3=[1,1,0]T. 证明A相似于对角矩阵A,求A,并求可逆矩阵P,使得P-1AP=A.
admin
2018-08-22
98
问题
设A是3阶矩阵,满足
Aα
1
=一α
1
,Aα
2
=α
1
+2α
2
,Aα
3
=α
1
+3α
2
+α
3
,
其中α
1
=[0,1,1]
T
,α
2
=[1,0,1]
T
,α
3
=[1,1,0]
T
.
证明A相似于对角矩阵A,求A,并求可逆矩阵P,使得P
-1
AP=A.
选项
答案
由题设条件,合并得 A[α
1
,α
2
,α
3
]=[一α
1
,α
1
+2α
2
,α
1
+3α
2
+α
3
] [*] 其中[*]Q可逆,[*] 则有AQ=QB,Q
-1
AQ=B,即A~B,所以A和B有相同的特征值. [*] 故A,B有特征值λ
1
=一1,λ
2
=2,λ
3
=1,λ
1
,λ
2
,λ
3
互不相同.故[*] 当λ
1
=一1时,(λ
1
E-B)X=0, [*] 当λ
2
—2时,(λ
2
E-B)X=0, [*] 当λ
3
=1时,(λ
3
E-B)X=0, [*] 故有[*]使得[*]则 [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/nXj4777K
0
考研数学二
相关试题推荐
设(1)计算A2,并将A2用A和E表出;(2)设A是二阶方阵,当k>2时,证明:Ak=O的充分必要条件为A2=O.
下列命题正确的是()
计算二重积分其中D是第一象限中由直线y=x和曲线y=x3所围成的封闭区域.
设函数f(x)在(一∞,+∞)内二阶可导,且f(x)和f"(x)在(一∞,+∞)内有界,证明:f’(x)在(一∞,+∞)内有界.
设3元的实二次型f=xTAx的秩为1,且A的各行元素之和为3.求一个正交变换x=Py将二次型f=xTAx化成标准;
已知齐次线性方程组(I)为又已知线性方程组(Ⅱ)的通解为x=k1(s,2,3,16)T+k2(2,1,2,t)T,其中k1,k2是任意常数.若方程组(I)与(Ⅱ)同解,试求m,n,s,t的值.
设在区间[0,2]上,|f(x)|≤1,|f”(x)|≤1.证明:对于任意的x∈[0,2],有|f’(x)|≤2.
求曲线点处的法线方程.
设X在区间(0,1)上服从均匀分布,在X=x(0<x<1)条件下Y在(0,x)上服从均匀分布,求(1)X与Y的联合概率密度f(x,y)及P(X+Y>1);(2)Y的概率密度fY(y).
设f(x)在[0,1]上二阶可导,且|f(x)|≤a,|f”(x)|≤b,其中a,b为非负常数,证明对任意x∈(0,1),有
随机试题
连接空调室内风机盘管的管道,()必须有不小于0.5%的坡度,且不许有积水部位。
(2006)“因天材,就地利,故城郭不必中规矩,道路不必中准绳”的思想见于()。
某毛石砌体挡土墙,其剖面尺寸如题图所示。墙背直立,排水良好。墙后填土与墙齐高,其表面倾角为β;,填土表面的均布荷载为q。假定挡土墙的主动土压力Ea=70kN/m,土对挡土墙基底的摩擦因数μ=0.4,δ=13°,挡土墙每延米自重209.22kN。试问,
以下大气污染源中属于点源的是()。
技术建议书的附件中按邀请函附件格式编制的有()。
2,4,4,8,16,()。
民事主体在法律允许的范围内有完全的意志的自由,自主实施民事法律行为,参加民事法律关系,任何单位和个人都不得非法干预。这体现了()。
2018年3月11日,第十三届全国人民代表大会第一次会议通过《中华人民共和国宪法修正案》,确立了()是中国特色社会主义最本质的特征。
阿卡德王国的创立者是()
计算dxdy,其中D={(x,y)|x2+y2≤1,x≥0,y≥0}.
最新回复
(
0
)