首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(Ⅰ)证明方程xn+xn一1+…+x=1(n为大于1的整数)在区间(,1)内有且仅有一个实根; (Ⅱ)记(Ⅰ)中的实根为xn,证明xn存在,并求此极限.
(Ⅰ)证明方程xn+xn一1+…+x=1(n为大于1的整数)在区间(,1)内有且仅有一个实根; (Ⅱ)记(Ⅰ)中的实根为xn,证明xn存在,并求此极限.
admin
2019-06-09
82
问题
(Ⅰ)证明方程x
n
+x
n一1
+…+x=1(n为大于1的整数)在区间(
,1)内有且仅有一个实根;
(Ⅱ)记(Ⅰ)中的实根为x
n
,证明
x
n
存在,并求此极限.
选项
答案
(Ⅰ)令f(x)=x
n
+x
n一1
+…+x一1(x>1),则f(x)在[[*],1]上连续,且 [*] 由闭区间上连续函数的介值定理知,方程f(x)=0在([*],1)内至少有一个实根. 当 x ∈([*],1)时 , f(x) =nx
n一1
+ (n一1)x
n一2
+…+2x+1> 1 > 0, 故f(x)在([*],1)内单调增加. 综上所述,方程f(x)=0在([*],1)内有且仅有一个实根. (Ⅱ)由x
n
∈([*],1)知数列{x
n
}有界,又 x
n
n
+x
n
n一1
+…+x
n
=1 x
n+1
n+1
+x
n+1
n
+x
n+1
n一1
+…+x
n+1
=1 因为x
n+1
n+1
>0,所以 x
n
n
+x
n
n一1
+…+x
n
>x
n+1
n
+x
n+1
n一1
+…+x
n+1
于是有 x
n
>x
n+1
,n=1,2,…, 即{x
n
}单调减少. 综上所述,数列{x
n
}单调有界,故{x
n
}收敛. [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/nYV4777K
0
考研数学二
相关试题推荐
(1)求(Ⅰ),(Ⅱ)的基础解系;(2)求(Ⅰ),(Ⅱ)的公共解.
设f(x)为[一a,a]上的连续偶函数,且f(x)>0,令F(x)=∫-aa|x一t|f(t)dt。当F(x)的最小值为f(a)一a2一1时,求函数f(x)。
设f(x)为[一a,a]上的连续偶函数,且f(x)>0,令F(x)=∫-aa|x一t|f(t)dt。当x取何值时,F(x)取最小值;
函数y=与直线x=0,x=t(t>0)及y=0围成一曲边梯形。该曲边梯形绕x轴旋转一周得一旋转体,其体积为V(t),侧面积为S(t),在x=t处的底面积为F(t)。求的值;
α1,α2,α3,β1,β2均为四维列向量,A=(α1,α2,α3,β1),B=(α3,α1,α2,β2),且|A|=1,|B|=2,则|A+B|=()
设函数μ=f(x,y)具有二阶连续偏导数,且满足等式=0,确定a,b的值,使等式通过变换ξ=x+ay,η=x+by可化简为=0。
(2008年试题,二)曲线sin(xy)+ln(y一x)=x在点(0,1)处的切线方程为________.
(2004年试题,三(5))设e
随机试题
用穴位埋藏法治疗哮喘可选择哪些穴位
共产党对于社会主义国家的领导,包括()。
下列划线词语解释不正确的一项是()
动物从吃进卵囊到粪便中出现新世代卵囊所需的时间,我们把这段时间称之为
动物诊疗机构连续停业()年以上的,或者连续()年未向发证机关报告动物诊疗活动情况,拒不改正的,由原发证机关收回、注销其动物诊疗许可证
目前,我国的政府与非营利组织包括事业单位在内都采用权责发生制。()
基金发行价格等于()
简述教师培养学生注意力的方法。
referendum
Whatarethespeakersmainlydiscussing?
最新回复
(
0
)