首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(1)设A,B为n阶矩阵,|λE-A|=λE-B|且A,B都可相似对角化,证明:A~B. (2)设A=,矩阵A,B是否相似?若A,B相似,求可逆矩阵P,使得P-1AP=B.
(1)设A,B为n阶矩阵,|λE-A|=λE-B|且A,B都可相似对角化,证明:A~B. (2)设A=,矩阵A,B是否相似?若A,B相似,求可逆矩阵P,使得P-1AP=B.
admin
2021-11-15
58
问题
(1)设A,B为n阶矩阵,|λE-A|=λE-B|且A,B都可相似对角化,证明:A~B.
(2)设A=
,矩阵A,B是否相似?若A,B相似,求可逆矩阵P,使得P
-1
AP=B.
选项
答案
(1)因为|λE-A|=|λE-B|,所以A,B有相同的特征值,设为λ
1
,λ
2
,…,λ
n
, 因为A,B可相似对角化,所以存在可逆矩阵P
1
,P
2
,使得 P
1
-1
AP
1
=[*], 由P
1
-1
AP
1
=P
2
-1
BP
2
得(P
1
P
2
-1
)
-1
A(P
1
P
2
-1
)=B, 令P
1
P
2
-1
=P,则P
-1
AP=B,即A~B. [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/ney4777K
0
考研数学二
相关试题推荐
设f(x)在(-a,a)(a﹥0)内连续,且f’(0)=2.证明:对0﹤x﹤a,存在0﹤θ﹤1,使得.
求.
=_________.
设f(x)在R上是以T为周期的连续奇函数,则下列函数中不是周期函数的是()。
微分方程的通解为__________.
设二元函数f(x,y)=|x-y|Φ(x,y),其中Φ(x,y)在点(0,0)处的某邻域内连续,证明:函数f(x,y)在点(0,0)处可微的充分必要条件是Φ(0,0)=0.
设A是m×n矩阵,且非齐次线性方程组AX=b满足r(A)==r<n.证明:方程组AX=b的线性无关的解向量的个数最多是n-r+1个。
证明:r(A)=r(ATA).
设A是m×n矩阵,B是n×m矩阵,则()。
设a1,a2,...at为AX=0的一个基础解系,Β不是AX=0的解,证明:Β+Βa1,Β+a2,...Β+at线性无关。
随机试题
西方社会采取“国家福利型”社会保障模式的国家有()。
李老师善于通过微信、QQ、博客等途径做学生班级工作,李老师扮演的角色是()。
(2018年四川)下列行为构成盗窃罪的是()。
中国近代第一次正式颁布的教育宗旨是()。
设随机变量X的概率分布为P{X=k}=,k=0,1,2,…,则常数a=
下面关于C++流的叙述中,正确的是()。
SmartphoneCustomersUpforGrabAbout10yearsagoImetanadvertisingexecutiveinNewYorkwhoexplainedthedifficulty
Wheredoestheconversationprobablytakeplace?
A、Theplayersfoundthebaskettoohightoreach.B、Theplayershadtroublegettingtheballoutofthebasket.C、Theplayersha
Accidentsarecaused;theydon’tjusthappen.Thereasonmaybeeasytosee:ashelfoutof【C1】______,apatchoficeonthemis
最新回复
(
0
)