首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是m×n矩阵,且非齐次线性方程组AX=b满足r(A)==r<n.证明:方程组AX=b的线性无关的解向量的个数最多是n-r+1个。
设A是m×n矩阵,且非齐次线性方程组AX=b满足r(A)==r<n.证明:方程组AX=b的线性无关的解向量的个数最多是n-r+1个。
admin
2019-09-29
68
问题
设A是m×n矩阵,且非齐次线性方程组AX=b满足r(A)=
=r<n.证明:方程组AX=b的线性无关的解向量的个数最多是n-r+1个。
选项
答案
因为r(A)=r<n,所以齐次线性方程组AX=0的基础解系含有n-r个线性无关的解向量,设为ξ
1
,ξ
2
,...,ξ
n-r
. 设η
0
为方程组AX=b的一个特解, 令Β
0
=η
0
,Β
1
=ξ
1
+η
0
,Β
2
=ξ
2
+η
0
...,Β
n-r
=ξ
n-r
+η
0
,显然Β
0
,Β
1
,Β
2
,Β
n-r
为方程组AX=b的一组解。 令k
0
Β
0
+k
1
Β
1
+...+k
n-r
Β
n-r
=0,即 (k
0
+k
1
+...+k
n-r
)η
0
+k
1
ξ
1
+k
2
ξ
2
+...+k
n-r
ξ
n-r
=0, 上式两边左乘A得(k
0
+k
1
+...+k
n-r
)b=0, 因为b为非零列向量,所以k
0
+k
1
+...+k
n-r
=0,于是k
1
ξ
1
+k
2
ξ
2
+...+k
n-r
ξ
n-r
=0,注意到ξ
1
,ξ
2
,...,ξ
n-r
线性无关,所以k
1
=k
2
=...=k
n-r
=0,故Β
0
,Β
1
,Β
2
,...,Β
n-r
线性无关,即方程组AX=b存在由n-r+1个线性无关的解向量构成的向量组,设Β
1
,Β
2
,...,Β
n-r+2
为方程组AX=b的一组线性无关解, 令γ
1
=Β
2
-Β
1
,γ
2
=Β
3
-Β
1
,...,γ
n-r+1
=Β
n-r+2
-Β
1
,根据定义,易证γ
1
,γ
2
,...,γ
n-r+1
线性无关,又γ
1
,γ
2
,...,γ
n-r+1
为齐次线性方程组AX=0的一组解,即方程组AX=0含有n-r+1个线性无关的解,矛盾,所以AX=b的任意n-r+2个解向量都是线性相关的,所以AX=b的线性无关的解向量的个数最多为n-r+1个。
解析
转载请注明原文地址:https://kaotiyun.com/show/DGA4777K
0
考研数学二
相关试题推荐
设A是m×n矩阵,B是n×m矩阵,则()
函数y=f(x)满足条件f(0)=1,f’(0)=0,当x≠0时,f’(x)>0则它的图形可能是()
已知F(x)是f(x)的原函数,则
设λ1,λ2是n阶矩阵A的特征值,α1,α2分别是A的对应于λ1,λ2的特征向量,则()
设非齐次线性微分方程y’+P(x)y=Q(x)有两个不同的解y1(x),y2(x),C为任意常数,则该方程的通解是()
微分方程y2dχ+(χ2-χy)dy=0的通解为_______.
设A是n阶非零实矩阵(n>2),并且AT=A*,证明A是正交矩阵.
从一艘破裂的油轮中渗漏出来的油,在海面上逐渐扩散形成油层.设在扩散的过程中,其形状一直是一个厚度均匀的圆柱体,其体积也始终保持不变.已知其厚度h的减少率与h3成正比,试证明:其半径r的增加率与r3成反比.
已知A是2n+1阶正交矩阵,即AAT=ATA=E,证明:|E—A2|=0.
已知线性方程组讨论参数p,t取何值时,方程组有解、无解;当有解时,试用其导出组的基础解系表示通解.
随机试题
女性患者,37岁,近10d来发热,体温最高在38.5℃,多在午后出现。伴咳嗽,多为干咳。应用青霉素治疗1周,不见好转。不除外支原体肺炎与早期继发性肺结核,鉴别诊断上下列哪项检查最重要
费用估算的方法有很多,常用的有()。
近年来,乡村旅游因其特有的自然资源、风俗民情和历史脉络而对游客产生了越来越强的吸引力。然而刚刚起步的乡村旅游大多充斥着廉价的兜售、毫无地方特色的“农家乐”的旅游揽客,忽视了其特有的文化内涵;对少数成功案例盲目效仿,对周边村落缺乏统一有效的协调和对比借鉴,出
下列各项中,会引起留存收益总额发生增减变动的是()。
最早用“启发式”教学的中外教育学家分别是()。
我国大庆这座城市的兴起,引起大量人口迁入,其影响因素主要是()。
左边给定的是纸盒的外表面,下列哪一项能由它折叠而成?
下列句子中含有升迁之意的是:
Ihopeyou’lldoitabit(carefully)______nexttime.
Onecalledherbossa"bitchfromhell"whileanotheradmitted"lyingthroughhisteeth"atinterview.BoththeBritishjob【B1】_
最新回复
(
0
)